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Abstract—The common view on feedforward control is that it
needs an accurate model in order to accurately predict a future
state of the system. However, in this paper we show that there
are model inaccuracies that do not affect the final position of a
motion, when using the right feedforward controller. Having an
accurate final position is the main requirement in the task we
consider: a pick-and-place task. We optimized the feedforward
controllers such that the effect of model inaccuracies on the final
position was minimized. The system we studied is a one DOF
robotic arm in the horizontal plane, of which we show simu-
lation and hardware results. The results show that the errors
in the final position can be reduced to approximately zero for
an inaccurate Coulomb, viscous or torque dependent friction.
Furthermore, errors in the final position can be reduced, but
not to zero, for an inaccurate inertia or motor constant. In
conclusion, we show that for certain model inaccuracies, no
feedback is required to eliminate the effect of an inaccurate
model on the final position of a motion.

I. INTRODUCTION

There is a difference between traditional robot control and

the way humans control their body: humans use feedforward

extensively while traditional robot control is mainly based on

feedback.

Humans use both feedback and feedforward when sending

out motor commands [1]. However, for fast motions, humans

cannot rely on feedback at all, due to the large time delays

(typically 150 ms for humans [2, 3]). Therefore, they have to

rely on feedforward, in which control signals are generated

based on the prediction of an (inaccurate) internal model [4].

In feedforward control, humans make use of the fact that

most tasks can be executed in multiple or an infinite number

of ways, the so-called task redundancy. Experiments on eye

movements indicate that humans exploit this task redundancy

such that the error in final position due to the influence

of uncertainty is minimized [5]. Similar error-minimizing

human feedforward motions have been reported for the games

of darts and skittles [6, 7, 8, 9]. We will focus on pick-

and-place tasks of robotic arms, which also possess task

redundancy; only the initial and final positions matter and

the path in between can be chosen freely. The knowledge

from the field of human motion control suggests that some

feedforward motions are more sensitive to uncertainty than

others. Therefore, we study the sensitivity of feedforward

controlled motions to an inaccurate model.
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Fig. 1. A schematic representation of the content of this paper. The one
DOF robotic arm has to perform a pick and place task. In this task, the
arm has to move from the initial to the goal position. The controller is
a feedforward controller, which means that the state (i.e. position θ and
velocity ω) is not used to determine the control signal. The control signal is
a current I , which is only a function of time. In this paper, we investigate the
sensitivity of feedforward motions to parametric model inaccuracies. These
model inaccuracies cause the arm to end up in a different position than the
goal state. We aim to minimize this error in the final position.

Traditionally, robots mainly use feedback to perform their

motions (e.g. PID control). The main reason that robots can

rely more on feedback than humans, is their smaller time

delays (typically <10 ms for robots). However, feedforward

still has advantages over fast feedback since it incorporates

a prediction of the behavior of the system, which means that

the controller is able to anticipate future states. Therefore,

the use of feedforward control has been investigated before

by robot researchers.

There are multiple examples of robotic systems where the

implementation of feedforward control (in combination with

feedback or not) already led to positive results. Schaal and

Atkeson [10] showed that robot juggling can be performed by
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an open loop controller. In their case, open loop means that

there is no feedback about the position of the ball. Seyfarth et

al. [11] showed that the right feedforward control scheme for

the swing leg retraction improves the stability of running in a

humanoid robot. And finally, Mombaur et al. [12, 13] showed

that stable walking and running are possible by creating open

loop stable periodic motions.

The work most strongly related to this study is that of

Becker and Bretl, since they also investigated feedforward

control under the presence of model inaccuracies. They

researched the influence of an uncertain wheel diameter

[14] on the motion of a differential drive robot and found

feedforward motions for which these model inaccuracies did

not influence the final position.

In this paper we will research a pick-and-place task of a

robotic arm, where the initial and goal positions and the time

to move are fixed and the path in between is only constrained

by the maximum current (see Fig. 1). We demonstrate that

by choosing the right feedforward controller, the error in

the final position due to parametric model inaccuracies is

reduced. For certain inaccuracies, it is even possible to

reduce the error to approximately zero. We performed the

simulations on a model of a one DOF robotic arm, while

optimizing a feedforward controller. We also performed hard-

ware experiments to confirm the results from simulation.

The rest of this paper is structured as follows. Section II

explains the methods we used, including the simulation

model and the optimization method. Sections III and IV

show results of respectively the simulations and the hardware

experiments. Finally, the paper ends with a discussion in

Section V and a conclusion in Section VI, where we will

conclude that for certain model inaccuracies, no feedback is

required to eliminate the effect of the model inaccuracy on

the final position.

II. METHODS

We studied the sensitivity of feedforward controllers by

optimizing the controller in order to minimize the error

in the final position of the arm due to a variation of the

model parameters. For all model parameters, we simulated

the model using five different values for the parameters (i.e.

the nominal value and four deviating values) while keeping

the feedforward controller the same for all five simulations.

This results in four motions that deviate from the nominal

motion. We chose to use four deviating values to capture non-

linear effects around the nominal parameter value. We did not

use more deviating values because this would unnecessarily

increase the computational time.

In the remainder of this section, we will discuss the con-

figurations we studied, the simulation model, which model

inaccuracies we considered, the implementation of the feed-

forward control, the task the arm has to perform and the

optimization method.
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Fig. 2. The two configurations we studied: (a) A simulation model of a
one DOF robotic arm to obtain theoretical results. (b) Hardware experiments
on a one DOF robotic arm to confirm the results of the simulation model
optimizations on a real-world system.

A. Configurations

We studied two configurations: a one DOF simulation

model and a one DOF robotic arm (see Fig. 2):

(a) A simulation model of a one DOF robotic arm.

We obtained the feedforward controller which is least

sensitive for inaccuracies in the simulation model.

(b) Hardware experiments on a one DOF robotic arm.

We performed hardware experiments on a one DOF

robotic arm in the horizontal plane (see Fig. 2b) to

confirm the results from the simulations.

B. Simulation model

The simulation model consists of a rotating inertia in the

horizontal plane. In the simulation model, we included three

types of frictional losses: Coulomb friction, viscous friction

and torque dependent gearbox friction. Torque dependent

gearbox friction is less commonly used than the other two.

The way we implemented it is similar to the force depen-

dent friction term in [15]. We obtained the values of the

parameters of the friction model by performing a system

identification on the robotic arm. The parameters of the

simulation models are listed in Table I. It might seem strange

that the viscous friction coefficient is negative, but in the

velocity range in which the arm operates, the total friction in

the model does not become negative. Apparently, this value

for the viscous friction coefficient (together with the values

for the Coulomb and torque dependent friction coefficients)

captures the nonlinear friction effects best for the tested range

of torques and velocities. The equations of motion are:

x =

[

θ

ω

]

(1)

ẋ =





ω
(

T − µv · ω − sign(ω) · (µc + µt · |T |)

Jjoint

)



 (2)



TABLE I
THE MODEL PARAMETERS OF THE ONE DOF ARM. THE VALUES ARE

OBTAINED THROUGH A SYSTEM IDENTIFICATION OF THE ROBOTIC ARM.
ALL INERTIAL TERMS ARE COMBINED IN THE INERTIA ABOUT THE

JOINT (Jjoint).

Parameter arm Symbol Value Varied?

Coulomb friction µc 0.19 Nm yes
Viscous friction µv -0.05 Nms/rad yes
Torque dependent friction µt 22 % yes

Inertia Jjoint 0.17 kgm2 yes
Motor constant kt 26.7 mNm/A yes
Gearbox ratio n 1:54 no

for ω 6= 0

ẋ =





0
(

T −min(µc + µt · |T |; |T |) · sign(T )

Jjoint

)



 (3)

for ω = 0.

θ is the angle of the joint, ω is the velocity of the joint, T is

the torque exerted by the motor on the joint, µv is the viscous

friction coefficient, µc is the Coulomb friction coefficient, µt

is the torque dependent friction coefficient and Jjoint is the

mass moment of inertia about the joint.

The simulation model includes a DC motor. The torque

applied by the DC motor on the joint is equal to:

T = n · kt · I (4)

Where kt is the motor constant, n is the gearbox ratio and I

is the current through the motor.

C. Model inaccuracies

The simulation model includes six model parameters. From

these parameters, the gearbox ratio can easily be determined

accurately and therefore the gearbox ratio is not varied in this

study. The other parameter values in Table I are potentially

inaccurate and will be varied. For all inaccurate parameters,

the simulation is performed with five parameter values: the

estimated (nominal) value and deviations of -20%, -10%,

+10% and +20% of this value. ±20% was chosen as a real-

istic value for parameter inaccuracies. An alternative would

be to calculate the derivatives of the final position to the

individual parameters. However, this only gives information

about infinitely small variations in the parameters.

D. Feedforward control

We implemented the feedforward control as a feedforward

current controller (see eq. (4)). One could argue that this

current controller is a feedback controller since it controls

the current in a feedback loop. However, since we have no

task specific feedback (i.e. the state is not fed back into the

controller), the total controller is a feedforward controller.

An alternative would be to use voltage control implemented

as pulse width modulation control. We use current control

because in control theory, torque control (implemented as

current control) is more common than voltage control. In

Section V, we will show that the choice for current control

or voltage control does not influence the results of our

optimization qualitatively.
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Fig. 3. An example of a feedforward control signal and the five motions
that result from the signal. The signal represents the current through the
motor as function of the time. There are 10 set points in total (t0 . . . t9)
and the current is constant in between the set points. The duration of the
signal is 1 second, after which there is a run out period. This run out period
stops when the velocities are reduced to zero by the friction. In this example,
the difference between the five motions is the result of a variation of the
Coulomb friction (the nominal value -20%, -10%, +0%, +10% and +20%).
The objective of the optimization is to minimize the RMS error of the final
positions.

E. Task

The robotic arm has to perform a pick-and-place task.

The important task parameters are the distance and time per

stroke. We chose the time per stroke to be 1 s and the distance

per stroke to be 1 rad. In Section V, we will show that

these arbitrary choices do not influence the results of our

optimization qualitatively.

F. Optimization method

The goal is to minimize the error in the position at the end

of the stroke. The error in the final position is caused by a

variation in the model parameters. In general, there is also an

error in the final velocity. To include this in the optimization,

we let the system run with a control signal of zero, until the

velocity is zero. During this time (the run out period, see

Fig. 3), the velocity is reduced to zero by the friction. The

error in the final position is evaluated after this run out period.

As mentioned earlier, we picked four values for which we

evaluate the final position (-20%, -10%, +10% and +20% of

the nominal value of the parameters), while the feedforward

controller is the same as in the simulation with the nominal

value of the parameters. The goal of the optimizations is to

find the feedforward controllers that minimize the errors in

these final positions. We weigh the four errors equally, which

assumes a uniform distribution of the inaccurate parameter.

This can be seen as the worst case scenario for the distribu-

tion of the parameter values [16, 17].

In this optimization with only four values of the model

parameter, there is a chance of over fitting the objective

function (i.e. obtaining results for which the error is only

small at the four deviating values of the model parameter

and is large in between). Therefore, in Section III, we will



show the error in the final position as function of the change

in the parameters and we will show that the choice to use

four values leads to good results that are not over fitted.

The cost function of the optimization is the RMS of

the error in the final positions of the four movements with

deviating parameter values. The movement is constrained by

the maximum current through the motor and constrained such

that the error in the final position of the movement with the

nominal value for the model parameter is zero:

E =

√

ǫ2
−20% + ǫ2

−10% + ǫ2+10% + ǫ2+20%

4
(5)

minimize
I(t)

E(I(t)) (6)

subject to |I(t)| ≤ Imax∀t

ǫ+0% = 0

ω+0% = 0

(7)

with

ǫi = |θi − θgoal| (8)

where E is the error function, ǫi is the error in the final

position of motion i, I(t) is the feedforward signal as

function of the time, Imax is the maximum current through

the motor and ω+0% is the angular velocity of the nominal

motion at t = tf . The maximum current in the optimizations

is 2A. Since this is a system specific value, in Section V we

will show that the choice for this value does not influence

the results of our optimization qualitatively.

Since the robotic arm has to perform a pick-and-place task,

the arm should end up close enough to the goal position to

pick or place an object. As a reasonable maximum deviation,

we chose 1 cm. Since the arm we use has a length of 0.4 m,

the maximum allowable error is Emax = 0.025 rad. We will

evaluate the performance of the feedforward controllers by

comparing this value to the error values of the controllers.

To have something to compare the minimization results

against, we also performed a maximization of the RMS of

the error in the final positions:

maximize
I(t)

E(I(t)) (9)

also subject to (7). We also calculated the factor of improve-

ment f :

f = 1−
Eminimized

Emaximized

(10)

which is a measure for the improvement that can be achieved

by optimization. An f of 1 means that the error can be

reduced to zero (or can be increased to infinity) by optimizing

the feedforward controller, an f of 0 means that the error does

not depend on the chosen feedforward controller at all.

The feedforward control signal I(t) is parameterized as

a piecewise constant function, an example of which is

shown in Fig. 3. The profile is defined by N set points

at t0, t1, . . . , tN−1, the time step between the set points is

constant. This means that we have N free variables for the

feedforward profile. For our simulations, we chose N = 10.
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Fig. 4. This figure shows bars from the minimal to the maximal errors
of the simulation model, that are caused by the model inaccuracies on the
vertical axis. The error of any feedforward signal that satisfies the constraints
lies on those bars. We clearly see that the optimizations of the feedforward
signal had an effect for all model inaccuracies. However, only the errors due
to inaccurate friction model parameters are close to zero. Note that we did
not prove that the errors are dense sets so the bars shown here might be an
overestimation of the set of all possible errors.

TABLE II
THE RESULTS OF THE ONE DOF FEEDFORWARD OPTIMIZATION ON THE

SIMULATION MODEL.

Parameter Eminimized (rad) Emaximized (rad) f

µc 0.0002 0.1164 0.9987
µv 0.0092 0.0374 0.7548
µt 0.0013 0.3901 0.9967
Jjoint 0.1775 0.2131 0.1667
kt 0.1385 0.2715 0.4898

In Section V, we will show that the results do not change

significantly when we change N . Because the optimization

problem is a non-convex constrained optimization problem,

the optimization is performed with a multi start of the

MATLAB function fmincon.

III. SIMULATION RESULTS

In this section, we show the results of the optimizations

on the simulation model. Fig. 4 visualizes the minimum and

maximum error that can be caused by model inaccuracies.

Table II shows the minimized and maximized errors and the

factors of improvement f .

We see that the various parameter inaccuracies have dif-

ferent effects on the final position of the arm:

• The effect of the Coulomb friction on the error highly

depends on the feedforward controller (f = 0.9987).

There are feedforward controllers for which the error is

the smallest of all parameter inaccuracies (E = 0.0002

rad). However, there are also feedforward controllers for

which the error is larger than the maximum allowable

error (E = 0.1164 rad > Emax).

• The effect of the viscous friction on the error depends

on the feedforward controller (f = 0.7548) and the

minimum error is allowable (E = 0.0092 rad < Emax).

However, since the maximum error is also relatively

small (E = 0.0374 rad), the factor of improvement is

not close to one.

• The effect of the torque dependent friction on the error

is similar to that of the Coulomb friction: it depends
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Fig. 5. The results from the optimization with an inaccurate Coulomb
friction coefficient. The plots on the left show the results of the minimization
of the error, the plots on the right show the results of the maximization
of the error. The plots show the optimized current profiles (a and b), five
different trajectories as function of time due to five different values for the
Coulomb friction coefficient (c and d) and the error in final position as
function of change of the parameter value of the Coulomb friction (e and f).
The graph also shows enlargements of the end of the position profile of the
minimization (c) and the error in position around the nominal value of the
Coulomb friction (e). The latter also shows five circles, which represent the
final positions of the arm with the nominal value of the Coulomb friction
and the four deviating values.

highly on the feedforward controller (f = 0.9967). There

are feedforward controllers for which a change in the

torque dependent friction results in an error that is

significantly smaller than the maximum allowable error

(E = 0.0013 rad < Emax). However, there are also

feedforward controllers for which the error is larger than

the errors of all other parameter inaccuracies. Therefore,

the factor of improvement is close to one.

• The effect of the inertia on the error only slightly

depends on the feedforward controller (f = 0.1667).

Also, the minimal error is significantly larger than the

maximum allowable error (E = 0.1775 rad > Emax).

• The effect of the motor constant on the error can be

reduced by the choice of the feedforward controller (f

= 0.4898). However, the minimum error is too large (E

= 0.1385 rad > Emax).

In general, we conclude that inaccuracies in the friction

model can be compensated for by the choice of the feedfor-

ward controller. Inaccuracies in the inertia and motor constant

cannot be compensated for.

Fig. 5 shows the results for the Coulomb friction optimiza-

tion in more detail. We clearly see how two different current

profiles (Fig. 5a and 5b) lead to different errors (Fig. 5c

and 5d), while the nominal motion reaches the goal state. In

Fig. 5e, we see that in the motion with minimized error, there

is a range of values of the Coulomb friction for which the

arm ends up in approximately the same position. This shows

that the optimization did not over fit the objective function

at the four values of the inaccurate parameter. Similar graphs

were obtained for the other optimizations.

The optimized current profiles in Fig. 5a and 5b have no

clear structure. This is due to the fact that the optimization

with 10 controller set points is redundant. This means that

there are multiple current profiles that lead to the same

(optimal) error value. This redundancy makes it hard to detect

a structure in the current profiles.

Interestingly, the motion that results from the minimization

of the error first moves in the negative direction before

moving towards the goal position. We observed such behavior

in many of our results. Probably such behavior reduces the

effect of the parameter inaccuracy on the final position by

canceling out effects in positive and negative direction.

IV. HARDWARE RESULTS

In this section, we show the results of the hardware

experiments. First, we will explain the test set up and second,

we will show the test results.

A. The robotic arm

Fig. 2b shows a picture of the one DOF robotic arm [18].

The DOF is created by an 18x1.5mm stainless steel tube,

connected with a joint. A weight of 1 kg is connected to

the end of the tube, which represents the weight of a gripper

plus a product. The motor is placed on a housing and AT3-

gen III 16mm timing belts are used to transfer torques within

the housing. The joint is actuated by a Maxon 60W RE30

motor with a gearbox ratio of 18:1. The timing belts provide

an additional transfer ratio of 3:1. The model parameters as

shown in Table I are based on a system identification of this

robotic arm.

We tested the results of the optimizations of two parame-

ters: the Coulomb friction and the inertia, because these two

parameter inaccuracies give qualitatively different results in

simulation (see Fig. 4 and Table II)

To change the Coulomb friction, we designed a mechanism

that adds Coulomb friction by clamping a nylon sleeve bear-

ing on the motor axis. The Coulomb friction can be increased

by tightening the screw of the clamping mechanism. Before

each experiment, we ran a system identification to determine

the amount of Coulomb friction we added. To change the

inertia, we added extra weights at the end point of the arm.

Table III shows the values of the parameter changes.

B. Results

On the robotic arm we did not perform an optimization

of the torque profile. Instead, we tested a grid of possible

feedforward controllers. Per parameter value for the Coulomb



TABLE III
THE VALUES OF THE CHANGED PARAMETERS IN THE HARDWARE

EXPERIMENTS.

Parameter Nominal value Values in experiments Units

µc 0.19 0.19, 0.22, 0.25 Nm

Jjoint 0.17 0.17, 0.19, 0.21 kgm2
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Fig. 6. A typical example of the data obtained from hardware experiments.
This figure shows the minimized and maximized motions for a changing
Coulomb friction. a) The feedforward current as function of the time. The
solid lines correspond to the motions with minimized and maximized error
in hardware experiments. The dashed lines are optimized current profiles in
simulation. This graph shows that the current profiles optimized in simulation
are the same as the current profiles with minimal and maximal error in
hardware experiments. b) The position of the arm as function of the time.
We clearly see that the spread in the final position of the minimized motion
is smaller than that of the maximized motion. For the minimized motion, it
is hard to distinguish the three lines, for the maximized motion the spread
is clearly visible.
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Fig. 7. This figure shows the results of hardware experiments. In these
experiments, we tested a grid of 32 possible feedforward controllers. Every
star represents the error value as a result of one current profile while varying
the Coulomb friction µc or the inertia Jjoint. We see that the results in this
figure are comparable to the results from simulation.

friction and inertia, we repeated the experiment with 32

different current profiles. Each current profile had three

controller set points of which the first one was determined

by a grid of 32 set points. The other two set points were

determined by the constraints on the final position and final

velocity in simulation. There are two reasons why we use

three set points in the hardware experiments instead of the

ten we used in simulation. First of all, using three set

points makes it feasible to test a grid of controllers since

the grid is one dimensional. Second, due to the switches

in the controller, the influence of the unmodeled backlash

increases and using only three controller set points minimizes

the influence of this backlash. In Section V we will show that

TABLE IV
THE RESULTS OF THE ONE DOF HARDWARE EXPERIMENTS.

Parameter Eminimized (rad) Emaximized (rad) f

µc 0.001 0.092 0.982
JJoint 0.040 0.073 0.457

by limiting ourselves to three controller set points instead of

ten, the factors of improvement will change but will still show

the same trend (e.g. 10% change for an inaccurate Coulomb

friction).

Fig. 6 shows the current and the position as function

of the time of a typical experimental run. It also shows

that the current profiles with minimal and maximal error in

hardware experiments correspond to the current profiles with

minimized and maximized error in simulation. For systems

with more DOFs, the current profiles from optimization

should be used instead of a less feasible grid search. Per

value of the first setpoint, we calculated the RMS of the

error in the final position with respect to the final position

of the motion with the nominal parameter value. Fig. 7 and

Table IV show the error values that were obtained from the

hardware experiments. From these results, we see that:

• The results of the hardware experiments with an inac-

curate Coulomb friction are comparable to the results

from simulation. The maximum error in simulation and

hardware experiments are respectively 0.1164 rad and

0.092 rad and in both cases, the minimum error is

approximately zero. Furthermore, the error due to an

inaccurate Coulomb friction has a larger spread than the

error due to an inaccurate inertia.

• The results of the hardware experiments with an inac-

curate inertia differs from the results from simulation.

The main difference is that the errors are smaller in the

hardware experiments. Since the difference between the

minimum and maximum error is the same in simulation

and the hardware experiments (respectively 0.0356 rad

and 0.033 rad), the factor of improvement is larger in

the hardware experiments.

We conclude that although there clearly are differences

between the simulations and the hardware results, in gen-

eral the hardware experiments confirm the conclusions from

the simulation study: the errors due to inaccuracies in the

Coulomb friction can be reduced to approximately zero,

while the errors due to inaccuracies in the inertia are always

larger than the maximum allowable error Emax.

V. DISCUSSION

In this study we researched motions of a one DOF robotic

arm, controlled by feedforward control. The task consisted

of fixed initial and goal positions and a fixed time per

stroke. The motion in between was only constrained by

the maximum current. We showed that the choice of the

motions in between the initial and goal positions is important

for the error in the final position due to parametric model

inaccuracies. For the one DOF system, the error in the final

position can even be reduced to approximately zero when



the Coulomb friction, viscous friction or torque dependent

friction are not accurately known.

A. Implications

The results of this study are important to consider when

implementing feedforward control, even in combination with

feedback control. The correct use of feedforward control

improves the performance of the system and this study shows

that the performance can even be improved in such a way that

certain model parameters do not have to be known accurately.

An interesting result was that most optimized motions do not

move from the initial to the goal position directly, but first

move away from the goal position.

This study also has implications on the field of human

motion control. Recent studies in the field of human motion

control focused on the uncertainty (i.e. noise) in the control

signals [5]. It would be interesting to research the accuracy

of the internal models of humans and the influence of this

accuracy on the motions humans choose. Another interesting

topic for future research would be the influence of noise on

the performance of feedforward control in robotic systems.

B. Choice of optimization parameters

In Section II, we introduced the task parameters time and

distance per stroke and their values. We also introduced

values for the maximum current and the number of set points

of the feedforward controller. Since these values are arbitrary,

we analyzed how the results in this paper depend on the

chosen parameter values. We varied those parameters and

ran the optimizations again to evaluate their influence. Fig. 8

shows the result of this analysis. From these results, we

conclude that:

• The number of controller set points does not influence

the optimizations, as long as there are enough set points.

For all optimizations, six set points appears to suffice.

• The effects of the choice of the distance per stroke,

time per stroke and maximum current are related. A

too low maximum current, too large distance per stroke

or too short time per stroke lead to a decreased per-

formance. This is intuitive since the maximum current

should be high enough to move the distance per stroke

within the time per stroke.

• The factors of improvement increase when we increase

the time per stroke or the maximum current. This

suggests that the system is approximately controllable

[14, 19, 20]. The approximate controllability of robotic

arms is an interesting topic for future research.

In general, we conclude that the specific results depend on

the choice for the distance per stroke, time per stroke and

maximum current. However, the qualitative results are the

same for reasonable values for those parameters.

C. Voltage control

In this paper we considered torque control, which we

implemented as current control. However, the lowest level of

control in the electronics is voltage control (i.e. controlling

the pulse width modulation). Fig. 9 shows the results of the
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Fig. 8. This figure shows four analyses of the influence of the choice
of four parameters on the results in this paper. The four graphs show the
factors of improvements we obtain through optimization for various number
of controller set points (a), distance per stroke (b), time per stroke (c) and
maximum current (d).
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Fig. 9. This figure shows bars from the minimal to the maximal errors
of the one DOF model using voltage feedforward control instead of current
feedforward control.

one DOF optimization using voltage feedforward control. By

comparing Fig. 4 and Fig. 9, we conclude that the conclusions

in this paper would have been the same had we used voltage

control.



D. Future work

There are four topics that need to be addressed in future

work in order to make feedforward control fully applicable.

Firstly, a more analytical approach, could lead to a deeper

understanding of paths that are insensitive to model inac-

curacies. Secondly, in practice it is likely to have multiple

parameter inaccuracies. Therefore, future research should in-

clude optimization of feedforward controllers for multiple pa-

rameter inaccuracies simultaneously. Thirdly, more complex

systems (e.g. system with more DOFs) have to be researched.

Finally, in order to prevent the error from accumulating after

multiple motions, the stability of feedfoward motions needs

to be addressed. A promising approach could be to analyze

cyclic pick-and-place tasks with the use of limit cycle theory.

VI. CONCLUSIONS

In this paper, we showed that by optimizing the feedfor-

ward controller for a one DOF robotic arm, we can reduce the

sensitivity for an inaccuracy in all model parameters. For the

three friction parameters (Coulomb friction, viscous friction

and torque dependent friction), the errors in the final positions

can even be reduced to approximately zero. For the inertia

and the motor constant, the errors in the final positions can

be reduced, but not to zero.
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