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SUMMARY
We consider flows possessing a combustion front when a gaseous oxidizer (air) is injected into the porous
medium, a rock cylinder thermally insulated preventing lateral heat losses and filled with light or medium
viscosity oil. When oxygen reacts with hydrocarbons at low temperatures, a series of reactions occur that
will convert a part of hydrocarbons to oxygenated hydrocarbons and gaseous product (water, carbon
dioxide etc.). The oxygenated hydrocarbons are compounds like ketones, alcohols, aldehydes and acids.
This process is termed low temperature oxydation (LTO). Indeed, LTO only involves some 25 % of the
possible sites that can react with oxygen. Therefore also the reaction heat per volume of fuel can at most
be 25 % of full hydrocarbon combustion and consequently the temperature in the LTO reaction zone is
very low. Upstream of the LTO reaction zone evaporization occurs. We formulate conservation laws for
liquid oil, gaseous oil, oxygen and inert gas components (combustion products and nitrogen) that includes
the reaction terms. Moreover we give the energy conservation equation. We give an analytical solution to
the equations. It turns out that the solution consists, from upstream to downstream, of a thermal wave, an
LTO wave that combines oxidation and evaporation and a Buckley-Leverett saturation wave. It is shown
that in the solution a major role is played by the existence of a resonance line at which the derivatives of
the oxygen and evaporated oil flux versus the oil saturation vanish. It means that the derivative of the oil
flux versus saturation is positive upstream of the resonance line and negative downstream of the resonance
line. The complete solution is described for typical parameters of LTO oil combustion. Computations show
that only a small part of the oil vaporizes or reacts. The oil velocity is close to the LTO speed. Thus the
LTO wave represents a mechanism of almost complete oil displacement by means of the temperature
increase in the LTO wave, which leads to a decrease of oil viscosity and increase of the gas flux in the
wave.
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Introduction

Recovery percentages from oil reservoirs range from 5% for difficult oil to 50% for light oil in highly

permeable sandstone reservoirs. Other reservoirs contain oil that is too difficult to produce with conven-

tional means. Part of this oil can be recovered using the methods of enhanced oil recovery (EOR).

One of the methods to enhance the recovery uses air injection leading to oil combustion. Conventional

oil combustion can be considered as an in-situ heat generation process and its purpose is lowering the

viscosity of oil. Two major types of oxidation processes are identified. The high temperature oxidation

(HTO) process includes coke formation and its subsequent oxidation at temperatures above 350°C. Due

to a high reaction rate, the HTO reactions occur in thin reaction zones. In the low temperature oxi-

dation (LTO) process hydrocarbons are gradually oxidized through the formation of ketones, alcohols,

aldehydes and acids at temperatures less than 300°C. As LTO only involves some 25 % [Dabbous and

Fulton (1974)] of the possible sites that can react with oxygen, also the reaction heat per volume of fuel

is roughly 25 % and consequently the temperature in the LTO reaction zone is very low. The order of

magnitude of the reaction rates is comparable with the reaction rates found for HTO. However, since

the oxygen concentration is much less than the fuel concentration in terms of moles/m3, the oxygen

consumption can occur within meters at the highest temperatures (300°C).

In this work we examine a very simplified model for LTO, which is probably more suitable to describe

clean up of gasoline (represented as heptane) spilled in dry porous rock. In this model a single pseudo-

component liquid fuel is considered, which is characterized by an average boiling temperature, density,

viscosity etc. Application of this theory to in-situ combustion is limited by the fact that oil contains

heavy components which do not vaporize and lead to the change of solution. Our theory, however,

provides understanding of interaction of three physical processes: LTO, vaporization and permeability

effects. The main result is the resonance condition that determines combustion wave parameters. This

condition appears to be generic and can be used in different models.

Model

We consider flows possessing a combustion front when a gaseous oxidizer (air) is injected into the

porous medium, a rock cylinder thermally insulated preventing lateral heat losses and filled with light or

medium viscosity oil. When oxygen reacts with hydrocarbons at low temperatures, a series of reactions

occur that will convert a part of hydrocarbons to oxygenated hydrocarbons and gaseous product (water,

carbon dioxide etc.). The oxygenated hydrocarbons are compounds like ketones, alcohols, aldehydes
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and acids. This low temperature oxidation (LTO) reaction is modelled as

(oil) + O2 → (oxygenated oil) + νg (gaseous products), (1)

i.e., one mole of oxygen reacts with some amount of oil leaving oxygenated oil together with νg moles

of gaseous products.

Assuming that chains are not broken, we ignore any viscosity- and molar mass changes of the oil. The

boiling points will be elevated, but to keep the model tractable we will ignore this fact and assume an

average boiling point. As a consequence of this assumption, all oil upstream of the combustion front will

be vaporized as we will see in the analysis. We consider situations at low temperatures (small reaction

rates) so that only few carbons in each hydrocarbon molecule get oxygenated, so we can disregard the

difference between oxygenated and initial hydrocarbons and consider a single oil pseudo-component.

We assume that the original oil contains so little heavy hydrocarbons that we can ignore coke formation,

so that high temperature oxidation is not possible. The concentration of water initially present in the

reservoir or condensed from the vapor generated in the LTO reaction is disregarded. Actually, our model

could easily be modified to deal with immobile (connate) water.

We study a simplified model, in which hydrocarbons act as a single pseudo-component that can be both

in the gas and in the liquid phase. The average oil molar weight is denoted by Mo [kg/mole]. The

saturation of the liquid oil will be denoted by S (a fraction of pore volume occupied by liquid oil). The

saturation of gas is, therefore, equal to 1−S. In the gas phase, we distinguish between the molar fraction

of gaseous oil X , of oxygen Y and of the remaining gas fraction Z = 1−X−Y that consists of reaction

products and inert components of the injected gas. Neglecting gas mass diffusion and capillarity effects,

the balance equations for liquid oil and gas components (gaseous oil, oxygen, and remaining gaseous

components) are

∂

∂t
ϕρoS +

∂

∂x
ρoufo = −Wv, (2)

∂

∂t
ϕρgX(1 − S) +

∂

∂x
ρgufgX = Wv, (3)

∂

∂t
ϕρgY (1 − S) +

∂

∂x
ρgufgY = −Wc, (4)

∂

∂t
ϕρgZ(1 − S) +

∂

∂x
ρgufgZ = νgWc. (5)

The sum of (3)–(5) together with the relation X+Y +Z = 1 yield the total gaseous components balance

law
∂

∂t
ϕρg(1 − S) +

∂

∂x
ρgufg = (νg − 1)Wc + Wv. (6)

In the equations, Wv [mole/m3s] is the vaporization rate of hydrocarbons, Wc [mole/m3s] is the con-

sumption rate of oxygen in the LTO reaction; according to (1) νgWc is the generation rate of gaseous

products. Also, ϕ is the rock porosity, ρo [mole/m3] is the molar density of the liquid oil evaluated in

terms of average molar weight Mo (the conventional mass density is, therefore, Moρo), u [m/s] is the

total seepage velocity, and

ρg = Ptot/RT (7)

is the molar density of gas at the prevailing pressure Ptot [Pa] and temperature T [K]. Pressure variations

are assumed to be small, so we take Ptot = const. The fractional flow functions are

fo =
ko/μo

kg/μg + ko/μo
, fg =

kg/μg

kg/μg + ko/μo
, (8)
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where μo(T ), μg(T ) [kg/m s] are the oil and gas phase viscosities. We assume that the relative perme-

ability functions ko(S) and kg(S) are positive with ko(0) = k′
o(0) = 0 and kg(1) = k′

g(1) = 0. For

example, in the quadratic Corey model one can use ko = S2, kg = (1 − S)2.

Assuming that the temperature of solid rock, liquid oil and gas are equal and neglecting heat losses, we

write the heat transport equation as

∂

∂t
(Cm + ϕcoρoS + ϕcgρg(1 − S))ΔT +

∂

∂x
(cgρgufg + coρoufo)ΔT = QcWc − QvWv. (9)

Here ΔT = T − Tres with the reservoir temperature Tres, Cm [J/m3K] is constant the heat capacity of

the porous rock, co [J/moleK] is the heat capacity of liquid oil per average mole Mo taken as a constant

for simplicity, and cg ≈ 3.5R [J/moleK] is the approximate gas heat capacity, ignoring small variations

of heat capacity among different gas components. The positive heats (enthalpies) Qc [J/mole of O2] and

Qv [J/mole of oil] correspond to the LTO reaction and vaporization of light oil evaluated at the reservoir

temperature Tres, taken per mole of oxygen and oil, respectively. We neglected heat losses and diffusion

effects. Conditions justifying these simplifications will be given in a separate section.

The vaporization rate Wv vanishes when liquid oil is in thermodynamic equilibrium with its gaseous

phase. The gaseous oil partial pressure equals Po = XPtot. In thermodynamic equilibrium, we have

Xeq =
Po

Ptot
=

Patm

Ptot
exp

(
−Qv

R

(
1
T

− 1
Tbn

))
, (10)

where Tbn [K] is the normal boiling point. Taking Po = Ptot in (10), one recovers the actual boiling

temperature T = Tb at pressure Ptot. For the temperatures under consideration, which do not exceed

the boiling temperature, the vaporization process is much faster than the LTO reaction, |Wv| � Wc.

In this case, as we will see later, the specific forms of combustion rates Wc and Wv are not important

for determining macroscopic solution parameters. They affect only the width of the LTO wave and its

internal structure.

All the coefficients in the equations (Cm, cg, ρo, etc.) are assumed to be constant, if not stated otherwise.

The air injection data are characterized by the Darcy velocity uinj and oxygen fraction Yinj .

Dimensionless equations

The governing equations are non-dimensionalized by introducing dimensionless dependent and inde-

pendent variables as ratios of dimensional quantities and reference quantities:

t̃ =
v∗t
x∗ , x̃ =

x

x∗ , θ =
T − Tres

T ∗ , m =
ρgufg

ρ∗guinj
, (11)

where

ρ∗g =
Ptot

RTres
, x∗ =

Yinjρ
∗
guinj

W ∗
c

, v∗ =
uinj

ϕ

(
μg

μo

)
T=Tres

, T ∗ = Tb − Tres, (12)

and Tb is the boiling temperature at the pressure Ptot, and W ∗
c is the characteristic value of the reaction

rate at reservoir temperature (see Eq. (53)). The dimensionless quantities θ and m describe the tem-

perature and gas flux, respectively. The length scale x∗ is the ratio of oxygen flux injected and oxygen

consumption in the LTO reaction, and v∗ is the reference oil speed when gas is injected. Thus, x∗ and

v∗ are chosen as reference quantities for the length and speed of the LTO wave. The following analysis

is carried out under the assumption that x∗ is much smaller than the overall problem scale, i.e., distance

between injection and producing wells.
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Using (8), (11), (12) and omitting the tildes in the dimensionless quantities, equations (9), (2)–(4) and

(6) are written in dimensionless form as

∂(1 + aS + εvT (1 − S)θ0/(θ0 + θ))θ
∂t

+
∂(vT θm + aθF )

∂x
= q(wc − rwv), (13)

∂S

∂t
+

∂F

∂x
= −bwv, (14)

ε
∂

∂t

θ0(1 − S)X
θ0 + θ

+
∂Xm

∂x
= wv, (15)

ε
∂

∂t

θ0(1 − S)Y
θ0 + θ

+
∂Y m

∂x
= −wc, (16)

ε
∂

∂t

θ0(1 − S)
θ0 + θ

+
∂m

∂x
= (νg − 1)wc + wv, (17)

with the dimensionless quantities

ε =
(

μg

μo

)
T=Tres

, a =
ϕcoρo

Cm
, b =

ρ∗g
ερo

, r =
Qv

Qc
, q =

ϕρ∗gQc

εCmT ∗ ,

vT =
ϕcgρ

∗
g

εCm
, hv =

Qv

RT ∗ , θ0 =
Tres

T ∗

(18)

and functions

F (θ, S,m) = ηψm, η(θ) =
(θ0 + θ)μg

εθ0μo
, ψ(S) =

ko

kg
. (19)

Note that ε ∼ 10−2 � 1, due to the small ratio between gas and oil viscosities. The quantities η(θ) and

ψ(S) are increasing functions of their arguments with the properties

η(0) = 1, ψ(0) = ψ′(0) = 0, ψ(1) = ∞. (20)

The dimensionless combustion and vaporization rates are wc,v = x∗Wc,v/(ρ∗guinj). Using (10), we get

Xeq(θ) = exp
(

hv

θ0 + 1
− hv

θ0 + θ

)
. (21)

The condition at x = 0 (injection well) is m = 1, θ = S = X = 0, Y = Yinj . The initial reservoir state

is θ = 0, S = 1, X = Xeq(0), Y = 0.

Thermal and saturation waves

The LTO reaction with injected oxygen leads to complete removal of liquid oil. Behind the LTO zone,

there is no oil, S = X = 0, and the gas flux is constant and equal to its value m = 1 at the injection point.

In the absence of oil, the reaction and vaporization rates and the terms related to the heat accumulated

and transported by oil vanish and (13) becomes

∂θ

∂t
+ vT

∂θ

∂x
= 0, (22)

where we used F = 0 (zero oil flux) and neglected the small ε-term related to the heat accumulated by

the gas. This equation possesses a wave solution θ = θrH(vT t), where H(·) is the unit step function.

This wave moves with speed vT , and the temperature changes from θr ahead of the wave to the temper-

ature of the injected gas θ = 0. If thermal conduction is taken into account, the wave profile becomes

smooth and its width increases in time proportionally to
√

t, see, e.g., Bruining et al. (2009).
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Figure 1 The oil flux function and saturation wave structure. Rarefaction wave for saturations S < Sd

followed by a shock from Sd to S = 1

Ahead of the LTO zone, the gas moves through the porous medium containing oil at the initial reservoir

temperature θ = 0. This gas contains the equilibrium oil vapor fraction X0 = Xeq(0) and no oxygen

Y = 0, so that the vaporization and reaction rates vanish, wv = wc = 0. The change of oil saturation is

governed by equation (14), which takes the standard fractional flow form

∂S

∂t
+

∂ũfo

∂x
= 0, (23)

where ũ = u/uinj is the dimensionless total seepage velocity, which is constant, and the oil fractional

flow function fo is evaluated at the reservoir temperature θ = 0. The function fo(S) has typically the

S-shaped form, see Fig. 1. Using (8), (18), (19), one can check that fo(S) = ψ(S)/(1 + εψ(S)).
When ε is small, the inflection point is close to S = 1. For example, for the quadratic model with

ψ = S2/(1 − S)2, the inflection point is found at S ≈ 1 − √
ε/3.

Equation (23) has a well-known self-similar solution S = S(x/t) representing a saturation wave. It has

a smooth part (rarefaction) satisfying the equation

x/t = ũf ′
o(S) (24)

followed by a discontinuity (shock) from Sd to S = 1 propagating with speed x/t = vd, see Fig. 1. The

rarefaction wave corresponds to a concave part of fo(S), where f ′
o(S) increases. The shock wave state

and speed are determined by the conditions

vd = ũf ′
o(Sd) = ũ

fo(1) − fo(Sd)
1 − Sd

. (25)

For the quadratic model with ψ = S2/(1 − S)2 and small ε, one obtains Sd ≈ 1 − √
ε and vd ≈

(ũ/2)ε−3/2. When all states in the saturation wave belong to the convex region of fo(S) (i.e., to the

right of the inflection point), the wave is a single discontinuity from a point S0 to S = 1 propagating

with speed

vd = ũ
fo(1) − fo(S0)

1 − S0
. (26)

The gas flux in the saturation wave can be found using (8), (11), (18), (19) as

m = ũfg =
ũ

1 + εψ(S)
. (27)

Thus, the total seepage velocity ũ can be found if one knows the gas flux m0 and oil saturation S0

upstream of the saturation wave.
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Figure 2 Wave sequence for the low-temperature combustion process.

Low-temperature oxidation wave

The LTO wave is the wave where oxygen reacts with liquid oil. We make the assumption, confirmed by

the ensuing analysis, that the LTO wave is a traveling wave with speed v faster than the thermal wave,

but slower than the saturation wave, see Fig. 2. The temperature upstream of the LTO wave is denoted

by θr. The oil saturation and the gas flux downstream of the LTO wave are denoted by S0 and m0. Thus,

our assumptions about the wave sequence can be summarized as

vT < v < min{(∂F/∂S)0, vd}. (28)

Here the derivative (∂F/∂S)0 is evaluated at θ = 0, S0, m0, so that the right-hand side of (28) gives the

minimal speed in the saturation wave, as shown in the previous section.

The LTO reaction stops behind the wave due to lack of oil, and the gas composition corresponds to the

injected gas. Thus, behind the LTO wave, we have a constant state with

θ = θr, S = 0, X = 0, Y = Yinj , m = 1. (29)

Ahead of the LTO wave, the reaction stops due to lack of oxygen, and the temperature is equal to the

reservoir temperature. The corresponding constant state is

θ = 0, S = S0, X = X0, Y = 0, m = m0. (30)

LTO wave profile equations

In a traveling wave, all variables depend on a single traveling coordinate ξ = x − vt. To simplify the

formulae, we neglect small ε-terms on the left-hand sides (corresponding to heat capacity and gas mass
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in accumulation terms), and write equations (13)–(17) as

−v
∂(1 + aS)θ

∂ξ
+

∂(vT θm + aθF )
∂ξ

= −q

(
∂Y m

∂ξ
+ r

∂Xm

∂ξ

)
, (31)

−v
∂S

∂ξ
+

∂F

∂ξ
= −b

∂Xm

∂ξ
, (32)

∂Xm

∂ξ
= wv, (33)

∂Y m

∂ξ
= −wc, (34)

∂m

∂ξ
= −(νg − 1)

∂Y m

∂ξ
+

∂Xm

∂ξ
, (35)

where the reaction rates in the first two and last equations were replaced using (33), (34). Using the

conditions (29) behind the wave and ψ(0) = 0 (see Eq. (19)), we integrate (31), (32), (35) as

−v(1 + aS)θ + vT mθ + aθF = −q(Y + rX)m + qYinj + (vT − v)θr. (36)

−vS + F = −bXm. (37)

m =
1 + (νg − 1)Yinj

1 + (νg − 1)Y − X
. (38)

Expressing F from (37) and substituting into (36) yields

−vθ + vT mθ = −qY m − (qr − abθ)Xm + qYinj − (v − vT )θr. (39)

In order to facilitate the analysis of the LTO wave profile, additional simplifications can be done. We

neglect the small terms (νg−1)Y ∼ 0.1 in (38) and all the terms with the factors r ∼ 0.1, vT ∼ 0.1qYinj

and ab ∼ 0.1q in (39). The latter simplifications use the fact that the combustion heat Qc is much larger

than the oil evaporation heat Qv or the oil and gas sensible heats coT
∗ and cgT

∗, as one can see using

(18). The resulting simplified equations obtained from (37), (38) and (39) are

vS − F (θ, S, m) − bXm = 0, m = 1/(1 − X), (40)

−vθ = −qY m + qYinj − vθr. (41)

Since ahead of the wave θ = Y = 0, equation (41) yields

θ = qY m/v, (42)

where we expressed

θr = qYinj/v. (43)

LTO wave structure

Since we have assumed that vaporization is a much faster process than combustion, the LTO wave can be

subdivided into two regions corresponding to vaporization and LTO reaction processes. The gas enters

in contact with the liquid oil in a thin vaporization region upstream of the wave. Here the gaseous oil

fraction increases rapidly from X = 0 in the injected air to its equilibrium value Xeq(θ), see Fig. 3. The

second much wider reaction region is where the LTO reaction occurs. In the analysis of these regions we

will use the fact that F (θ, S, m) is an increasing function of both θ and m, and ∂F/∂S = 0 for S = 0.
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Figure 3 Structure of the low-temperature oxidation wave. Change in temperature θ, liquid oil satura-
tion S, oxygen fraction Y and oil fraction X in the gas. One region is dominated by vaporization and
the other by LTO reaction (with slow condensation). The spatial scale is schematic, since the reaction
region is usually several orders wider than the vaporization region.

In the vaporization region, the reaction rate wc can be neglected. The oxygen flux determined by (34)

does not change and is equal to its value upstream Y m = Yinj . The temperature θ = qYinj/v given by

(42) is also constant. The gas flux m = 1/(1−X) is an increasing function of X . The relation between

S and X is determined by expression (40), whose differentiation yields

dX

dS
=

(
v − ∂F

∂S

) (
∂F

∂m

dm

dX
+ bm + bX

dm

dX

)−1

. (44)

The denominator in the right-hand side is positive, since ∂F/∂m and dm/dX are both positive. Thus,

X increases with S when

v > ∂F/∂S. (45)

In particular, this condition is satisfied at the constant state behind the LTO wave, where S = 0 and

∂F/∂S = 0. The increase of X is bounded by a resonance point, where the derivative (44) vanishes,

v = (∂F/∂S)r. (46)

The subscript r denotes the value at the resonance point θr, Sr, mr = 1/(1 − Xr). Since X must

increase in the vaporization region, the solution cannot be continued through the resonance point.

In the reaction region, the oil vapor fraction can be taken equal to its equilibrium value X = Xeq(θ).
Since the temperature decreases downstream, the gaseous oil condenses in this region. Due to the LTO

reaction, the oxygen flux mY := Y m governed by (34) decreases monotonically from the value Yinj

upstream to zero downstream. Using (42) one can see that θ, X = Xeq(θ) and m = 1/(1 − X) are

increasing functions of mY . The relation between S and mY is determined by expression (40), whose

differentiation yields

dmY

dS
=

(
v − ∂F

∂S

)(
∂F

∂θ

dθ

dmY
+

∂F

∂m

dm

dmY
+ b

d(Xeq(θ)m)
dmY

)−1

. (47)

The denominator on the right-hand side is positive. Thus, mY increases when S decreases provided that

v < ∂F/∂S. (48)

In particular, this condition is satisfied at the constant state downstream as is assumed in (28). The

value of mY is bounded by a resonance point (46), where the derivative (47) vanishes. Since the oxygen
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flux mY changes monotonically in the reaction region, the solution cannot be continued through the

resonance point in this region.

We see that the inequalities (45) and (48) have opposite signs in the vaporization and reaction regions.

Thus, these regions can be connected only at the resonance point determined by equation (46). Sub-

stituting v from (46) with F = η(θ)ψ(S)m into (40), (42) we obtain extra conditions at the resonance

point as

Sr − ψ(Sr)
ψ′(Sr)

=
bθrXeq(θr)

qYinj(1 − Xeq(θr))
, ψ′(Sr) =

qYinj(1 − Xeq(θr))
θrη(θr)

, (49)

where we used the second expression on the right-hand side of the first expression together with the

relations Y m = Yinj in the vaporization region and Xr = Xeq(θr) in the reaction region evaluated at

the resonance point.

It is easy to see that equations (49) determine the resonance point uniquely in the case when both ψ′(S)
and S − ψ(S)/ψ′(S) are positive increasing functions of S vanishing at S = 0. This follows from the

observation that the left-hand sides of the first two equations in (49) are increasing functions of Sr, while

the right-hand sides are increasing and decreasing functions of θr, respectively. In particular, this is the

case for the quadratic permeability model, for which ψ(S) = S2/(1 − S)2.

With the LTO wave speed given by (46), the relation among all dependent variables θ, S, X , Y , m in

both regions are determined as described above. Recall that when solving the first equation in (40) for

S, one must choose the solution branch passing through the resonance value Sr and satisfying condition

(45) in the vaporization region and (48) in the reaction region. The dependence of the variables on the

spatial moving coordinate ξ can be found by numerical integration of equation (33) in the vaporization

region and equation (34) in the reaction region.

LTO wave parameters

We see that the speed (46) and the states ahead and behind the LTOwave are determined by the resonance

point of the wave profile. The temperatures θr behind the LTO wave and at the resonance point are the

same. The constant state ahead of the LTO wave is characterized by θ = 0, X0 = Xeq(0) and m0 =
1/(1 − X0). The equation for the corresponding oil saturation S0 is found by taking F = ψ(S0)m0 in

(40) as

vS0 − ψ(S0)m0 = bX0m0, (50)

where one must chose S0 on the solution branch in the reaction region as described above.

One can see from (43), (49), (50) that the quantities in the LTOwave are determined by the dimensionless

parameters b, q, Yinj , and the function η(θ), ψ(S), Xeq(θ) defined in (18), (21). These quantities are

independent on the air injection velocity uinj . The latter influences only the spatial and velocity scales

in (12), which are proportional to uinj .

Let us verify the initial assumptions (28). Using (43), we find v = qYinj/θr with θr < 1. As was

mentioned above, vT ∼ 0.1qYinj , so that the first condition in (28) is valid. The second condition

v < (∂F/∂S)0 is satisfied by construction of the LTO wave profile in the reaction region, where (48)

holds. The speed vd ∼ ε−3/2 is very large, so the last assumption v < vd in (28) is unlikely to be

violated. Note that the condition v < vd can be violated if the oil saturation in the initial reservoir is

lower than 1. If this happens, the saturation discontinuity becomes a part of the LTO wave.
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Figure 4 Geometric explanation of the LTO wave resonance condition. (a) A fold singularity of the S-
surface and the feasible domain. (b) Integral curves on the plane of gaseous oil and oxygen fluxes. Solid
and dotted lines correspond to the upper and lower parts of the S-surface, respectively. (c) Integral
curves in the case of high vaporization rate.

Geometrical interpretation

We see that the resonance point provides extra conditions needed to determine the LTO wave parameters.

To see that this is a generic phenomenon for systems of balance laws, we will provide a geometric

interpretation for the LTO wave equations. It is convenient to choose θ, S, m and the fluxes of gaseous

oil and oxygen denoted by mX = Xm and mY = Y m as independent variables. The change of mX and

mY in the LTO wave is governed by ordinary differential equations (33), (34). The remaining variables

θ, S, m are determined by equations (40), (42). Here the dependence θ = qmY /v and m = 1 + mX

is linear. Thus, the essential variables are mX , mY and S. Fig. 4(a) shows schematically the surface

determined by the first equation in (40) relating S with mX , mY . This surface has a fold. The fold

line is given by condition (46), which corresponds to the vanishing derivative with respect to S taken

from the left-hand side of (40). The fold projection determines a boundary of the feasible domain on the

(mX ,mY )-plane, Fig. 4(a).

The constant state behind the LTO wave corresponds to S = mX = 0, mY = Yinj , and belongs to

the lower part of the S-surface in Fig. 4(a). The constant state S0, mX = X0m0 and mY = 0 ahead

of the LTO wave belongs to the upper part of the S-surface. These two states are denoted by L and

R in Fig. 4. Thus, the LTO wave profile must be an integral curve that passes from the lower to the

upper part of the S-surface. When ξ varies, the typical integral curve reaches the resonance line (fold)

at some finite value of ξ as shown in Fig. 4. It cannot be extended outside the feasible domain on the

(mX ,mY )-plane, neither pass to the other side of the S-surface. However, there can be special integral

curves passing through a singular point r on the resonance line. This singular point corresponds to the

intersection of integral curves on the S-surface, i.e., their tangency at the point r on the (mX ,mY )-
plane, Fig. 4(a,b). Thus, the LTO wave profile can be constructed if the parameters are chosen to ensure

that both constant states of the LTO wave (L and R) lie on such a special curve, as shown in Fig. 4(b).

This provides an extra restriction on the wave parameters.

Let us see how this restriction gives the LTO wave solution under the assumption that the vaporization

rate wv in (33) is very high. In this case the integral curves on the (mX ,mY )-plane are approximately

parallel to the mX -axis and lead to the equilibrium points Xeq(θ), as shown in Fig. 4(c) (the integral

curves on both sides of the S-surface coincide when projected). The set of equilibrium points is shown
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by the bold line. It is also an approximate integral curve with direction corresponding to decreasing mY ,

as determined by (34). The unique way to construct the LTO wave profile is presented in Fig. 4(c). The

first part of the profile is parallel to the mX -axis. Is starts at the point L and determines the vaporization

region in Fig. 3. The second part of the profile is the equilibrium curve determining the reaction region.

It ends at the point R. The two parts are connected at the resonance point on the fold line.

The general mathematical theory for traveling waves in systems of balance laws [Kulikovskii et al.

(2001)] predicts the possibility of singularities in the wave profile. Singularities occur when the matrix

of coefficients of the derivative terms in system (31)–(35) becomes singular at some state inside the

wave. Our approach shows how this singularity can be resolved in order to find extra determining

conditions. The following conditions for the resonance point separating the vaporization and reaction

regions are the main result

Xr = Xeq(θr), v = (∂F/∂S)r. (51)

The distinctive feature of our problem is that conditions (51) are independent on specific forms of vapor-

ization and reaction rates. All we need to know is that vaporization is much faster than the LTO reaction.

Also one can verify that condition (51) does not require the simplifications made in the derivation of

wave equations in the beginning of this section.

The resonance condition (51) has a simple physical explanation. The oil saturation undergoes a finite

change in a very thin vaporization region. Thus, this region must propagate with characteristic speed

∂F/∂S (singularities propagate along characteristic lines in hyperbolic systems of PDE’s). This char-

acteristic speed can be evaluated at the boundary between the vaporization and reaction regions, where

X = Xeq(θ).

Effects of diffusion, capillary pressure and heat losses

The thermal conduction is described by a term λ∂2T/∂x2 added to the right-hand side of (9), where λ
[W/mK] is the thermal conductivity of the porous medium. One can see that taking into account only

thermal conductivity (without other diffusion terms) does not change LTO wave parameters. The reason

is that the heat conduction term has no influence on the form of the S-surface in the (mX , mY , S) space

and, thus, the resonance condition (51) remains unchanged.

The gas mass diffusion can be modelled by the term ∂
∂x

(
D(1 − S)∂X

∂x

)
added to the right-hand side of

(3), where D [m2/s] is the diffusion coefficient. Similar terms appear in (4), (5). The diffusion terms

become important when the gas composition changes essentially in the distance of order LD = Dϕ/uinj

[m], where uinj/ϕ is the gas speed at injection point.

The dominant second order derivative term in the liquid oil balance equation (2) is related to capillary

effects. The magnitude of this term is characterized by the quantity DS =
√

κϕ(γ/μo) cos Θ [m2/s],

where κ [m2] is the rock permeability, γ [N/m] is the liquid oil surface tension and Θ is the contact

angle (see, e.g., Bedrikovetsky and Rowan (1993)). Capillary effects become important when the oil

saturation S changes essentially in the distance of order LS = DS/v [m], a formula that relies on the

fact that the oil speed is close to the LTO wave speed v.

When diffusion terms are taken into account, the LTO wave solution will be changed in a thin vapor-

ization region and in the region near the resonance point, where the derivative ∂S/∂x becomes infinite.

However, the resonance condition (determining the LTO wave parameters) remains approximately valid,

if the diffusion terms are small in the reaction region. Recall that this condition is related to impossi-

bility of extending the wave solution through the resonance point. The appropriate length scale in the

reaction region is determined as L = Yinjρ
∗
guinj/Wmax

c [m], where Yinjρ
∗
guinj is the injected oxygen

flux and Wmax
c [mole/m3s] denotes the LTO reaction rate at the highest temperature. Thus, the gas

mass diffusion and capillary effects can be neglected when L � max(LD, LS). One can check that L
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parameter meaning value

Qc LTO reaction enthalpy 390 kJ/mole of O2

Qv vaporization heat 34 kJ/mole of oil

R ideal gas constant 8.314 J/molK

Cm heat capacity of porous medium 2 × 106 J/m3K

cg heat capacity of gas 3.5R J/molK

co/Mo heat capacity of oil 2.1 kJ/kgK

Tres reservoir temperature 323K (50°C)

Tbn normal boiling temperature of oil 373K (100°C)

Yinj molar fraction of oxygen in air 0.21

Moρo oil density 900 kg/m3

Mo average molar mass of oil 0.1 kg/mole

ϕ porosity 0.3

Table 1 Nomenclature, units and typical values of reservoir parameters.

is proportional, and LD, LC are inversely proportional to the injected gas speed uinj . Thus, diffusion

effects are small when uinj is high enough, as one could expect.

Our analysis of the LTO wave is valid when the lateral heat losses in the wave are much smaller than

the heat generated by LTO. Estimating the rate of lateral heat losses for a reservoir of width h [m] as

λ(∂T/∂y) ∼ λT ∗/h and the heat generation rate as T ∗Cmvh, we obtain the condition

h2 � λ/(Cmv), (52)

where v [m/s] is the dimensional wave speed. Thus, heat losses in the LTO wave can be neglected if the

reservoir width is large. A typical value of the right-hand side in (52) is 1m2. Heat losses in the hot zone

upstream of the LTO wave lead to slow temperature decrease to the reservoir temperature, T → Tres.

This process, however, has minor influence on the LTO wave parameters.

Analysis of LTO waves for typical reservoir parameters

Typical values of reservoir parameters are given in Table 1. The quadratic model ko = S2, kg = (1−S)2

for relative permeabilities yields ψ(S) = S2/(1 − S)2. We approximate the air and oil viscosities as

μg = 1.8 × 10−5
√

T/293 [K] and μo = 4 × 10−10ρo exp(3.8 Tb/T ) [Pa s], see Bird et al. (1960).

Consider the case with total pressure Ptot = 106 [Pa] (10 atm). Using (10), we compute the boiling

temperature Tb = 472 [K]. Then we use (12), (18) to compute the temperature scale T ∗ = 149 [K]

and the dimensionless parameters ε = 0.02, b = 2.04, q = 7.19, hv = 27.4. Solving numerically

system (49), we find Sr = 0.202, θr = 0.455. Thus, the temperature behind the LTO wave equals

Tr = Tres + T ∗θr = 391 [K]. Using (12), (43), we obtain the LTO wave speed as v = 0.22 uinj . The

oil saturation downstream of the LTO wave is found using (50) as S0 = 0.576.

Fig. 5 shows the LTO wave parameters for the pressure Ptot changing between 1 and 50 [atm]. The oil

saturation S0 ahead of the wave increases rapidly up to the value 0.5 at the pressure Ptot = 7 [atm],

and then increases slower up to values over 0.8. The dependence of the LTO wave speed on pressure

is approximately linear. It reaches the value of one half of the gas Darcy velocity at Ptot = 40 [atm].

Computations show that only a small part of oil vaporizes or reacts. As a result, the oil velocity ufo/ϕ
downstream of the LTO wave computed using (8) appears to be close to the LTO wave speed v. Thus,

the LTO wave represents a mechanism of complete oil displacement by means of temperature increase

inside the LTO wave, which leads to decrease of oil viscosity and increase of gas flux in the wave.

The spatial distribution of dependent variables in the LTO wave is determined by the LTO rate Wc.

Experimental studies [Dabbous and Fulton (1974); Freitag and Verkoczy (2005)] show large variation
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Figure 5 The oil boiling temperature Tb, the temperature Tr upstream of the LTO wave, the LTO wave
speed v relative to the injection speed uinj , and the saturations S0 and Sr ahead of the LTO wave and
at the resonance point depending on the reservoir pressure Ptot.

of LTO reaction rates that may differ about hundred times for different types of oil. Let us consider the

reaction rate Wc [moles of O2/m
3s] that agrees with the results of [Freitag and Verkoczy (2005)] as

Wc = 3.1 × 106S exp
(
−7066

T [K]

)(
Y Ptot

Patm

)0.5

. (53)

Consider the same pressure as above, Ptot = 106 [Pa] (10 atm). The characteristic length of the LTO

wave is found from (12) as x∗ = 1.1 × 105uinj [m], where we used Y = Yinj , S = 0.5 and T = Tres

in (53). The coefficient 1.1 × 105 [s] ∼ 1 day characterizes the time necessary for self-ignition of the

LTO wave.

The length L characterizing the LTO reaction at the highest temperature Tr = 390 [K] is found similarly

as L = 2.46 × 103uinj [m]. Taking the typical values of gas diffusion coefficient D = 2 × 10−5 [m2/s]

and the capillary effect parameter as DS = 10−5 [m2/s], we estimate the corresponding characteristic

lengths as LD = Dϕ/uinj = 6 × 10−6/uinj [m] and LS = DS/v = 4.5 × 10−5/uinj [m]. For

the injection velocity uinj = 10−3 [m/s] (86 [m/day]) we have L = 2.46 [m] � max{LD, LS} =
0.045 [m], so the diffusion effects are small. Note that experimental results for a different type of oil

Dabbous and Fulton (1974) gave almost 100 times lower reaction rates and, hence, for such oil diffusion

effects can be neglected even for much lower injection speeds.
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