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1 Introduction

The subject of this paper is determining optimal replacement decisions for components under
stochastic deterioration. Using the discrete renewal theorem, three cost-based criteria for
comparing maintenance decisions over unbounded horizons are determined in Sec. 2: (i) the
average costs per unit time, (ii) the discounted costs over an unbounded horizon, and (iii)
the equivalent average costs per unit time. By using these criteria, the cost of preventive
maintenance can be balanced against the cost of corrective maintenance. In structural
engineering, a distinction can often be made between a structure’s resistance and its design
stress. A failure may then be defined as the event in which - due to deterioration - the
resistance drops below the design stress or the failure level. Since deterioration is uncertain,
it can best be regarded as a stochastic process. On the basis of a stochastic gamma process,
the probabilities of failure per year, i.e. the probabilities that the resistance drops below the
failure level per year, are calculated in Sec. 3. A case study on the maintenance of cylinders
shows the usefulness of the replacement model in Sec. 4.

2 Cost-based Criteria for Comparing Maintenance Decisions

Usually, maintenance is defined as a combination of actions carried out to restore the struc-
ture’s component to, or to “renew” it to, the original condition. Inspections, repairs, re-
placements, and lifetime-extending measures are possible maintenance actions. Through
lifetime-extending measures, the deterioration can be delayed as such that failure is post-
poned and the component’s lifetime is extended. Roughly, there are two types of mainte-
nance: corrective maintenance (mainly after failure) and preventive maintenance (mainly
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before failure). Corrective maintenance can best be chosen if the cost arising from failure is
low (like for instance replacing a burnt-out light bulb); preventive maintenance if this cost
is high (like for instance heightening a dyke). In structural engineering, the consequences of
failure are generally so large that mainly expensive preventive maintenance is applied. The
use of maintenance optimisation models is therefore of considerable interest.

During the lifetime of a structure, we can roughly identify four phases: the design, the
building, the use, and the demolition. There are mainly two phases in which it is worth
applying maintenance optimisation techniques: (i) the design phase and (ii) the use phase.
In the design phase, the initial cost of investment has to be balanced against the future cost
of maintenance. In the use phase, the cost of inspection and preventive replacement have to
be balanced against the cost of corrective replacement and failure.

Since the planned lifetime of most structures is very long, maintenance decisions may be
compared over an unbounded time-horizon. According to Wagner [11, Ch. 11], there are
basically three cost-based criteria that can be used to compare maintenance decisions:

1. the expected average costs per unit time, which are determined by averaging the costs
over an unbounded horizon;

2. the expected discounted costs over an unbounded horizon, which are determined by
summing the (present) discounted values of the costs over an unbounded horizon,
under the assumption that the value of money decreases in time;

3. the expected equivalent average costs per unit time, which are determined by calculating
the discounted costs per unit time.

The notion of equivalent average costs relates to the notions of average costs and discounted
costs. The cost-based criteria of discounted costs and equivalent average costs are most
suitable for balancing the initial building cost optimally against the future maintenance
cost. The criterion of average costs can be used in situations in which no large investments
are made (like inspections) and in which the time value of money is of no consequence to us.
Often, it is preferable to spread the costs of maintenance over time and to use discounting.

Examples of optimising maintenance in the design phase are: determining optimal dyke
heightenings and optimal sand nourishments whose expected discounted costs are minimal
(see Speijker et al. [5] and Van Noortwijk & Peerbolte [8], respectively). Examples of opti-
mising maintenance in the use phase are: determining cost-optimal rates of inspection for
dykes, berm breakwaters, and the sea-bed protection of the Eastern-Scheldt barrier (see Van
Noortwijk et al. [6, 10, 7, 9]), and determining cost-optimal preventive maintenance intervals
(see Sec. 4 of this paper).

The maintenance of structures can often be modelled as a discrete renewal process, whereby
the renewals are the maintenance actions that bring a component back into its original
condition or “as good as new state”. After each renewal we start, in statistical sense, all over
again. A discrete renewal process {N(n) : n € IN} is a non-negative integer-valued stochastic
process that registers the successive renewals in the time-interval (0, n]. Let the renewal times



Ty, Ts, ..., be non-negative, independent, identically distributed, random quantities having
the discrete probability function Pr{T}, =i} = p;(d), ¢ € IN, with 322, pi(d) = 1, where
pi(d) represents the probability of a renewal in unit time ¢ when the decision-maker chooses
maintenance decision d. We denote the costs associated with a renewal in unit time 2 by
¢;(d), © € IN. The above-mentioned three cost-based criteria will be discussed in more detail
in the following subsections.

The expected average costs per unit time.

The expected average costs per unit time are determined by simply averaging the costs over
an unbounded horizon. They follow from the expected costs over the bounded horizon (0, n],
denoted by C(n,d), which solve the recursive equation

Cn,d) = Y- p(@ei(d) + Cn = i) n

for n € IN and C'(0,d) = 0, when the decision-maker chooses maintenance decision d. To
obtain this equation, we condition on the values of the first renewal time T} and apply the
law of total probability. The costs associated with occurrence of the event Ty =i are ¢;(d)
plus the additional expected costs during the interval (¢,n],7 = 1,...,n. Using the discrete
renewal theorem (see Feller [1, Ch. 12 & 13] and Karlin & Taylor [3, Ch. 3]), the expected
average costs per unit time are

lim C(nvd) _ Dt Cz(d)pl(d) _ C(d) (2)

" n i1 ipi(d)

Let a renewal cycle be the time-period between two renewals, and we recognise the numerator
as the expected cycle costs and the denominator as the expected cycle length (mean lifetime).
Eq. (2) is a well-known result from renewal reward theory (see e.g. Ross [4, Ch. 3]). If
¢;(d) =1 for all ¢ € IN in Eq. (2), then the expected average number of renewals per unit
time is the reciprocal of the mean lifetime.

The expected discounted costs over an unbounded horizon.

Discounting expected costs over an unbounded horizon is based on the assumption that the
utility of money decreases in time from the standpoint of the present. Since the future cost
can be discounted to its present value on the basis of a discount rate, we can compare the
value of money at different dates. In mathematical terms, the (present) discounted value of
the costs ¢, in unit time n is defined to be a"¢, with a = [1 + (r/100)]! the discount factor
per unit time and 7% the discount rate per unit time, where r > 0. The decision-maker is
indifferent to the costs ¢, at time n and the costs a™c¢, at time 0. Therefore, the higher the
discount rate, the better it is to postpone expensive maintenance actions.

The expected discounted costs over a bounded time-horizon can be obtained with a recursive
formula similar to that of the expected costs in Eq. (1). Again, we condition on the values of
the first renewal time T} and apply the law of total probability. In this case, however, we want
to account for the discounted value of the renewal costs ¢;(d) plus the additional expected



discounted costs in time-interval (z,n], ¢ = 1,...,n. Hence, the expected discounted costs
over the bounded horizon (0,n] can be written as

Calinsd) = 3 a'p(d) [ed) + Caln = )] 3)

for n € IN, and C,(0,d) =0, when the decision-maker chooses maintenance decision d. By
using Feller [1, Ch. 13], the expected discounted costs over an unbounded horizon C,(d) can

be written as S al (d)pi(d)
C.(d) = Tim Cn.d) = i= @ cild)pild) 4

We recognise the numerator of C,(d) as the expected discounted cycle costs, while the
denominator can be interpreted as the probability that the renewal process terminates due

to discounting. Such a renewal process is called a terminating renewal process since infinite
inter-occurrence times can cause the renewals to cease. The inter-occurrence times 77, Z,,. . .,
of our imaginary terminating renewal process have the distribution Pr{Z, =i} = o'p;(d),

i € IN,and Pr{Z; = o} =1 — 32, a'pi(d).

The expected equivalent average costs per unit time.

The expected equivalent average costs per unit time relate to the two notions of average
costs and discounted costs. To determine this relation, we construct a new infinite stream
of identical costs with the same present discounted value as the expected discounted costs
over an unbounded time-horizon C,(d). This can be easily achieved by defining an infinite
stream of costs appearing at times: = 0,1,2,..., which are all equal to (1 —a)C,(d). Using
the geometric series, we can write

2o a'(1 = a)Ca(d) = Ca(d) (5)

when the decision-maker chooses maintenance decision d, 0 < o < 1. We call (1 — a)C,(d)
the equivalent average costs per unit time. As « tends to 1, from below, the equivalent
average costs approach the average costs per unit time:

lim (1 — a)Cu(d) = C(d), (6)

all
using LL”Hopital’s rule.
The initial cost of investment.
For cost-optimal investment decisions, we are interested in finding an optimum balance
between the initial cost of investment and the future cost of maintenance, being the area of

life cycle costing. In this situation, the monetary losses over an unbounded horizon are the
sum of the initial cost of investment ¢y(d) and the expected discounted future cost C,(d):

Lao(d) = co(d) + Cald), (7)

when the decision-maker chooses decision d, and the discount factor is «, 0 < o < 1.
The corresponding expected equivalent average costs per unit time are (1 — «)L,(d). For
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investment decisions, we cannot use the criterion of the expected average costs per unit time,

1) = 1im 9 4 ca) = o(a), (8)

n—oo n

because the contribution of the initial cost to the average costs is completely ignored.

3 Stochastic Deterioration and Time of Failure

A difficulty in modelling maintenance is that the process of deterioration and the time of
failure are uncertain. In structural engineering, a distinction can often be made between a
structure’s resistance (e.g. the crest-level of a dyke) and its design stress (e.g. the maximal
water level to be withstood). A failure may then be defined as the event in which - due to
deterioration - the resistance drops below the design stress or the failure level.

Stochastic deterioration.

Since deterioration is uncertain, it can best be regarded as a stochastic process. At first
glance, it seems possible to represent the uncertainty in a deterioration process by the normal
distribution. This probability distribution has been used for modelling the exchange-value
of shares and the movement of small particles in fluids and air. A characteristic feature of
this model, also denoted by the Brownian motion with drift, is that a structure’s resistance
alternately increases and decreases, like the exchange-value of a share. For this reason, the
Brownian motion is inadequate in modelling deterioration which proceeds in one direction.
For example, a dyke of which the height is subject to a Brownian deterioration can, according
to the model, spontaneously rise up, which of course cannot occur in practice!

In order for the stochastic deterioration process to proceed in one direction, we can best
consider it as a so-called ‘gamma process’. In mathematical terms, a gamma process is a
stochastic process with independent non-negative increments (e.g. the increments of crest-
level decline of a dyke) having a gamma distribution with a known average rate of deteriora-
tion. In the case of a gamma deterioration, dykes can only sink. An advantage of modelling
deterioration processes through gamma processes is that the required mathematical cal-
culations are relatively straightforward. Recall that a random quantity X has a gamma
distribution with shape parameter @ > 0 and scale parameter b > 0 if its probability density
function is given by:

Ga(z]a,b) = [b*/T(a)] 2" " exp{—bz} I(000)(),

where I4(z) = 1for € A and I4(z) =0for x € A, and ['(a) = [Z,t* te~" dt is the gamma
function for @ > 0. A gamma process with stationary increments is defined as follows. The
gamma process with shape function at > 0, ¢ > 0, and scale parameter b > 0, is a continuous-
time stochastic process {Y () : t > 0} with the following properties:

1. Y(0) = 0 with probability one;
2. Y(r) = Y(t) ~ Ga(a(r —t),b) for all 7 > ¢ > 0;
3.

(t) has independent increments.



The characteristic function of the gamma distribution Ga(a,b), which is given by

¢(u) = [b/(b—iu)]" = exp { ;" (e™* — 1) dM(x)}

where M(z) = —a [2°(e7% /y) dy for > 0, shows us that the gamma process is an integral
of compound Poisson processes with jump intensity M(xz) (see Gnedenko & Kolmogorov [2,
pp. 86-87]). Hence, the gamma process is a pure jump process. Let X (?) denote the amount
of deterioration at time ¢, ¢ > 0, and let the probability density function of X (#) be given by

px(o(@) = Ga (x| [#*1] /0%, n/0”) (9)

for p,o > 0 with
E(X(t)) =put, Var(X(t)) = ot

Due to the stationarity of the above stochastic deterioration process, both the mean value
and the variance of the deterioration are linear in time. For expected deterioration being
non-linear rather than linear in time, we refer to Van Noortwijk & Klatter [10].

Stochastic time of failure.

A component is said to fail when its deterioration exceeds a certain failure level, say y, where
y is defined as the initial resistance ro minus the failure level s. Let the time at which the
failure level is crossed be denoted by the lifetime T (in years). Due to the gamma distributed
deterioration, Eq. (9), the lifetime distribution can then be written as:

de — LUt/ [yl /o)
P([wt]/o?) 7

where T'(a,z) = [ t*"te™"dt is the incomplete gamma function for > 0 and « > 0. The
probability of failure per year, denoted by p;, ¢t = 1,2, 3, ..., follows immediately from Eq. (10):

F() = Pr(T <1} =Pr{X() 29} = [ prgla) (10)

pi=F(i)—F(i—1), i = 123,... (11)

A useful property of the gamma process is that the gamma density in Eq. (9) transforms into
an exponential density if ¢ = (o/p)?. When the unit-time length is chosen to be (o /p)?, the
increments of deterioration are exponentially distributed with mean 0%/ and the probability
of failure in unit time ¢ reduces to a Poisson distribution (see e.g. Van Noortwijk et al. [6]):

L Tyt Yy .
P =G [g] exp{—g}, i= 1,2,3,... (12)

This unit time facilitates the algebraic manipulations considerably and, moreover, often
results in a very good approximation of the optimal decision (see the example of Sec. 4).

4 Example: Maintenance of a Cylinder

A well-known preventive maintenance strategy is the age replacement strategy. Under an
age replacement policy, a replacement is carried out at age k (preventive replacement) or
at failure (corrective replacement), whichever occurs first, where & = 1,2,3,... A preventive
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replacement entails a cost cp, whereas a corrective replacement entails a cost cp, where
0 <cp <ep.

As a simplified example, we study the maintenance of a cylinder on an existing swing bridge.
Preventive maintenance of a cylinder mainly consists of replacing the guide bushes and
plunger, and replacing the packing of the piston rod. In the event of corrective mainte-
nance, the cylinder has to be replaced completely because too much damage has occurred.
The cost of preventive maintenance is ¢p = 30,000 Dutch guilders, whereas the cost of
corrective maintenance is ¢z = 100,000 Dutch guilders. Both maintenance actions bring
the cylinder back into its “as good as new state”. The expected deterioration is assumed
to degrade linearly in time from the initial condition of 100% down to the failure level of
0%. The rate of deterioration is based on periodic lifetime-extending maintenance, in terms
of cleaning and sealing the cylinder, at a frequency of once in w = 5 years. The cost of
lifetime-extending maintenance is approximately ¢z = 20,000 Dutch guilders. The time at
which the expected condition equals the failure level is 15 years with uncertainty parameters
@ =6.67 and 0 = 1.81. Suppose either a preventive replacement or a corrective replacement
is carried out at unit time ¢, then the cylinder’s lifetime is extended at the units of time
w, 2w, 3w,...,[(1 = 1)/w|w, where |2] is the largest integer less than or equal to x. Using
the geometric series, the discounted costs of a lifetime extension at unit time ¢ can be written
as

av — olE=D)/w]+1)w

1 —av

w=1,2,3.... Then, it follows from Eq. (4) that the expected discounted costs of lifetime

a'er 4+ a*ep + ..+ ol Wl — €L, = XiwCLs

X 105 Expected discounted costs over an unbounded horizon (o)
4 Il Il Il Il Il Il

- cost of lifetime extension
|:| cost of preventive replacement

- cost of corrective replacement

Dutch guilders

10 20 30 40 50 60 70
Age replacement interval [unit time]

Figure 1: Maintaining a cylinder on an existing swing bridge. The expected discounted costs over an
unbounded horizon as a function of the age replacement interval &k, k =1,...,75.



extension and age replacement over an unbounded horizon are

Colk) = lim Co(n k) = S8 ewer + oler] pi + [kaCL + Q{kCP:| (1 — K pz’)
AR T o) + o (1= L)

where C,(n, k) are the expected discounted costs in the bounded time-interval (0,n]. The

Y

optimal age replacement interval £* is an interval for which the expected discounted costs
over an unbounded horizon are minimal, i.e. for which C,(k*) = ming=y23,. Ca(k). Note
that the replacement model can also be applied for determining the optimal initial resistance
of a structure, which balances the initial cost of investment ¢p optimally against the future
cost of maintenance C, (k™).

On the basis of an annual discount rate of 5%, the expected discounted costs of life-time
extending, preventive and corrective maintenance are displayed in Fig. 1. The expected
discounted costs over an unbounded horizon are minimal for a preventive replacement interval
of k* =10 years. If the cost of lifetime-extending maintenance is not taken into account,
then the optimal preventive replacement interval is 13 years. The latter result also follows
when the expected discounted costs are calculated with respect to units of time of length
(0/p)? = 0.074 and a discount factor of a®%™ = 0.9964 per unit time (see Sec. 3).
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