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Abstract

In this paper amodel of the dynamics of a stretched string is derived. The sag of the string
due to gravity is neglected. The string is suspended between afixed support and avibrating
support. Due to the vibrating support the oscillation of the string in vertical direction is
influenced by a parametrical excitation. The parametric term originates from alongitudinal
vibration caused by an elastic elongation and then influences the transversal vibrations in-
and out-of-plane. The study will be focused on the existence and stability of time-periodic
solutionsin transversal direction. The stability isanalyzed by using alinearisation method.
In addition the different types of periodic motions of the string will be determined.

1 Introduction

The vibrations of stretched strings have been investigated by many researchers, because a
variety of physical systems can be described by stretched strings, e.g., the stay cable of a
cable-stayed-bridge, an overhead power transmission line, and so on. Most of the studies
of oscillations of stretched strings has mainly focused on the transverse displacements. The
earliest experiment was successfully done by Melde in [1]. He observed that the string can
oscillate transversally with an amplitude of about 4% of the length of string, athough the
excitation force is purely longitudinal. A number of papers corresponding to this subject
has been published, for instancein[2, 3, 4].

The oscillations of the strings can be caused by many factors [5, 6]. Lilien and Pinto
da Costa [7] studied the vibrations caused by a purely parametrical excitation of inclined
cables of a cable-stayed-bridge. Pinto da Costa et a. [8] also studied the steady-state
response of inclined cables when the ratio between the excitation frequency and the first
natural frequency of the cables is close to two. The dominant phenomenon in that case is
a parametric excitation. Corresponding to this case it has been shown in [9] that the mode
generated by a parametric excitation may easily have amplitudes ten times larger than the
amplitudes of the transversally excited modes.

*Lecturer in Jurusan MIPA Universitas Lampung, Indonesia, on leave as a PhD researcher at the Delft
University of Technology, The Netherlands.
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In[9, 8, 7] the vibrations of the strings are only studied in the plane. On the other hand if
the frequency of excitation falls in a certain resonance range, the string movement in the
plane becomes unstable, and leads to out of plane vibrations ( seealso [10, 12, 11, 13]). An
experiment to show this phenomenon has been done by Matsumoto et al. [14].

In arecent paper by Zhao et a. [15] thein- and out-of-plane excitation of aninclined elastic
cableisinvestigated (without considering the primary parametric excitation in longitudinal
direction). Lee and Renshaw [16] studied the stability of parametrically excited systems
using a spectral collocation method. In this paper, the model of an stretched string motion
will be derived by neglecting the sag of the string due to gravity. The periodic solutions
will be studied by using the averaging method, whereas their stability will be studied by
linearizing the averaged equations.
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Figure 1. The dynamic state of the string suspended between afixed support at x=0and a
vibrating support at x = I.

2 The derivation of the model equation

We consider aperfectly flexible, elastic, unstretched string with length | < 1. Let (X,0,0) be
the coordinate of each material point P of the string with X € [0,1]. The string is stretched
uniformly so that the stretched length is 1. In the stretched state the point P will have the
coordinates ((1+ ap)X,0,0), where m, = % —1istheinitial strain. Denote the dynamic
displacement of the point P by U (X,1)i, V(X,1)j and W(X, 1)k, where i, j and k are the
unit vectors along the axes of the Cartesian coordinate system andt istime. U and V are
the displacements in horizontal and vertical direction, respectively, whereas W represents
the displacement perpendicular to the picture asindicated in Fig. 1. So the vector position
R(X, 1) of the point P in the dynamic state can be written as:

R(X,7) = [(1+ o)X + U (X, 7)]i +V (X, 1)j + W(X, T)k. (2.1
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The relative strain per unit length of the stretched string is:

| JROGD) | ~1= /(4 o) + U2+ VWG 1 22)

where Uy, Vi, and W represent the derivative of U (X,1), V (X, 1), and W(X, 1) with re-
spect to X, respectively. Introduce the new coordinate x by:

X= (14 mo)X, (2.3

implying that x € [0,1] and set U (X,T) = U((H—X(Do),%) =0(x,1), V(X,1) :V((H—Xmo),f) =
V(x,T), and W(X, 1) :W((H—X(DO),E) =W(x,7), then the relative strain r (x,t) per unit length
becomes:

F(%T) = (14 00)y/ 14 (20 + 2+ B+ i2) — 1. 2.4)
The kinetic and the potential energy densities of the system are given by:

K = %p(ﬁ%+\7%+\l~\l%) and P= %Erz(x,%), (2.5)
respectively, where p is the mass of the string per unit length and E is Young’s modulus.

By assuming that | O |, | Vx |, and | Wy | are small with respect to 1, the potential energy
may be approximated by its Taylor expansion [P; up to terms of the sixth degree:

Ps = %E[w§+2wo(l+wo>ﬂx+(1+mo)zﬁ§+wo(1+wo)(\7§+w§)+ax(1+mo)(v§+
W2) — (1-+ o) (v2+vv2) 21+ 00) (BB —gux(l+mo)(v2+w2)
(2+ 00) T(F + W) + (1+mo) 2(\7§+W§)2—(1+mo)ﬁ§(V§+W§>—§(l+
wo)(\7§+W§)] (2.6)

The Lagrangian density D = K — [P is used in a variational principle [17] to obtain the
following eguations of motion:

Pl — E(1-+ 00) i = %E<1+mo>i (@ 49) 20, +9) — (& +92)° +
3L (V -+ W) + 3T+ W5)* — A (5 + W5 |
pVer — Eo(1+ o) Vx =

V) -+ 20530 + B0 ( + W) — 20050 — va(\i +ig)?),

=

PWir — Eo(1+ o)Wy = EE(l + o) aa [2uxwx 202y + W (VP 4 W2) — 3(%2 +

V) G W+ 2030 + B2V (2 + W2) — 20V — Vi (B + wz)z} 2.7)

=2 and E“’° = . By taking the damping forces
(proportional to the veI oci ity) into account the model problem (2.7) becomes:

(Lt 00T = 0+ 2 [(B )~ 20(F ) — (B R+
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(2 -+ 2) -+ 300( + WE)? — 4 (% + i),
— %\7)0( = —OZ]_\7T + Czaix [UXVX — vax + %~
3R (2 4+ W2) — 080, — V(P + w27,
Wer — oW = —OloWy + Cla [uxWX OV + ;Wx(\é +WE) + O\l — = O (% +
W2) + 3020 (B + W2) — Gl — —Wx(V2+W§) ] (28)

where0 < x< 1,1t > 0, @, 0,1, and ¢ are nonnegative damping parameters. The following
boundary conditions are considered:

a(o,tr) = V(0,t) = W(0,t) = O,

a(1,t) =f(r), and V(1,7) =wW(1,1) =0, (2.9
where f(t) is a periodic function. Note that the string is fixed at x =0 and that at x =1
there is atime varying forci ng in the x-direction implying a parametrical (or longitudinal)
forcing. By assuming % << c? 7 and by setting my = g =¢ (small) and ¢t = t, system
(2.8), after dividing by ¢, becom%

W) + 30 (2 + W2)2 — 4T3 + wﬁ)]

o ) . 1. - . 3. .. .o .
EWE — EWyx = —SC—ZWH‘ Ix [UXWX — U Wy + EWX(V?( +Wg) — EUXWX(Vi + W) + G Wi

gwx(\i +ig)2). (2.10)

In afirst order approximation, that is, for € — O the first equation of (2.10) reduces to:

+ 3y (2 + W2) — (it —

o =y [(B ) 204 ) — (B4 )7+ IR ) +
308 + W22 — 4G5(% + Z) |. (2.11)

If one assumes additionally that the transversal vibrations V and W are of O(g) it follows
from (2.11) that Gi(x,t) = O(e?). Thisimplies that one only keeps the term § 9 (% +W2) in
the right hand side of (2.11) and the others can be neglected in afirst order approximation:

n= o (B ) (2.12)

After integration of (2.12) with respect to x and by using the boundary conditions (2.9) for
G the following expression for G, can be derived:

1
SBR[+ [ B+ 213
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By using the new time variablet and by substituting (2.13) into the second and third equa-
tions of (2.10) (and by introducing initial conditions), the following model equations are
obtained (up to O(g)):

Vir (% E) — Vi (%, ) = evia(%.) [; /0 BT W T f(0)] — eoave(x.D).

0<x<1t>0,

wr(. ) o) = e )3 [ 02060) + B )b+ 1(0)] — ot
0<x<1t>0,

IC's: V(X,0) = vo(X),wW(X,0) = Wp(X), (X, 0) = vi(X), W (X, 0) = wy(X),

BC's: v(0,t)=w(0,t)=0, v(1,t)=w(1t)=0, (2.19)
wherev, w, f, o, and o, are respectively defined by : V= ev, W= ew, f = €1, Oc‘—zl = €0l
“22 = eop. Thefunction f(t) and the parameters oy and o are e-independent. Additionally

it will be assumed that f(t) = F sin(At), in which without lost of generality A and F are
taken positive constants.

3 Discretization of the model equation

By considering the boundary conditions (2.14), the solutions v(x}) and w(x,t) of (2.14)
can be expanded in eigenfunction-series:

ZVn sn(ux) and  w(xt) an SIN(nX), (3.1

where 1, = nt, n=1,2,3,... . By substituting (3.1) into (2.14) and by using the or-
thogonality properties of theelgenfunctl ons, one obtains the following infinite dimensional
system for vi(t) and wy(t):

M
A
A
Z
_|_
o
\/I

0 )+ 1n ) = & [oan(@) + 1B (D) (5 (©) + Fsin(iD))].

;\_
Il

M ©
Ao
N
Z
+
S
\_/l

(t )+Fsm(kt))]

N
T
N

Win(©) + HEwn (D) = —e |ovin(©) + bEwa (D)

0) = 2/01\70(x)sin(nnx)dx, n(0) =2 [ vi(X)sin(nmx),

S,

0

1 1
Wn(0) = 2 /O Wo(X) SN(MTX)dx,  \in(0) = 2 /0 Wi (X) Sin(nmx), 3.2

wheren =12 3,... and the dot represents differentiation with respect to t. Considering
the values of A, there are two possibilities:

(i) A # 2us+ O(e) for all s; then the parametric forcing term does not influence the O(1)
approximations of the solutions on atime-scale of order €1, and no O(1) time vary-
ing motion will occur due to parametric excitation.

(i) A =2ps+ O(e) for an integer s; then the parametric term is important in the equation
for the s-th mode. This possibility implies that an O(1) periodic solution can be
expected due to parametric excitation.
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In what follows the case A near 2 will be studied. This value implies that the external
force will excite the s-th mode (in- and out-of-plane) but not the other modes. The infinite
dimensiona system (3.2) is now truncated to only the s-th modes. This can be justified
in the following sense. It can be shown rigorously (see [9]) that all other modes initially
present will vanish exponentially up to O(e). Thismeans that except for the s-th modes (in-
plane and out-of-plane), the modes which are not present initially will not become larger
than O(e). Theinteraction of the s-th modes in-plane and out-of-plane is described by:

Vs + L2Vs = —e[oclverpsvs( (\/2+m12)+an(kt))]
i+ 1w = —¢ Vs + usws<zus(v§+wg) +Fsin() ) | (33)

By setting At = 2t, where A = 2(stt+¢en) and n = O(1), system (3.3) becomes (up to order
O(e)):

WO ws(t) =~ [a(t) + it (s02(E) + WE(D) + 2Bssin(2) — 2n)|.
V) ) = [omd0) - (O (1(B(0) + wE(D) + 2Bssin(2t) - 20)]. (34)

where ys = %3, Bs= % F, and a prime represents differentiation with respect to t.

4 On the of periodic solutions of system (3.4)

In system (3.4) the excitation term 2fssin(2t) describes a parametric resonance and will
lead to an O(1) amplitude response in the system. Moreover, an O(1) interaction between
the in-plane and out-of-plane modes will occur. From a practical point of view system
(3.4) may represent the motion of a stretched string (stay cable) due to a pure parametric
excitation.

Introduce the transformations (w(t), Vs(t)) — (As(t), Bs(t)) and (ws(t), Ws(t)) —
(Cs(t), Ds(t)):

vs(t) = As(t) sin(t) + Bs(t) cos(t), ws(t) =Cs(t)sin(t) + Ds(t) cos(t),
Vs(t) = Ag(t) cos(t) — Bs(t) sin(t), ws(t) = Cs(t) cos(t) — Ds(t) sin(t). 4.1)

System (3.4) then becomes after averaging:

At) = (G + BB 5 (3082 + B2) + (G2 + B2) — 201 + 5(ACs + B.D9Ds).
Bi(t) = —((0a— P)Bs—Ac[ 5(3(R2 + B2) + (G2 + D)) — 20| — 5(ACs+ BsDIC).
Cst) = —&((@+B)Cs+ ‘s[§<<&2+82>+3<@2+oé>>—2ﬁ]+§/: Gt BDo)Bs).
Dt) = —&((@— B)Ds — Cu[ 7 (A2 + B2) +3(C2 + D)) — 2] ~ 5(ACs + BDIAS).

4.2)

whereg = e, [3— BS o =%, 0p =%, andn =, and where Aq(t), Bs(t), C(t), and

Ds(t) are the averaged approximations of Ag(t), Bs(t), Cs(t), and Ds(t), respectively. It
should be observed that for f < 0 asimple transformation (As := Bs, Bs:= —As, Cs := D,
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and Dg 1= —_53) leads again to system (4.2) for EZ 0. Hence, the analysis can be restricted
to the case § > 0. From system (4.2) it can readily be deduced that

%('A_\sﬁs(t) - i@(t)) = _g(&l + a2)('6\_555('[) - gsgs(t))v (4-3)

implying that afirst integral of system (4.2) is given by:
G(As, Bs,Cs, Ds) = (ADs(t) — BLs(t) )& 1o, (4.4)

By using the transformation (4.1) it can easily be shown that (4.4) is a first integral of
the original system (3.3). In what follows the critical points of system (4.2) and their
dependence on the parameters o1, o, M, and B will be investigated. These critical points
correspond to periodic solutions of system (3.4). Depending on the values ofo; and o, the
following two cases will be studied: oy = o = 0 (no damping) and o, o, > 0 (positive
damping).

4.1 The case without damping: oy = 0 =0
The critical points of (4.2) withoy = o, = 0 satisfy the following algebraic system:
e —] - 91l = -
BAs-+Bs| 7 (3(A2+B2) + (C2+D2)) — 20| + —(Ascs+ BsDs)Ds = 0,
BB+ As[ 3 (3R +B) + (G2 + D)) — 27 + 5 (ACe+ BDIG =0,
_ 1
BC + B[ 7 (A2 + B2) + 3(C2 + D) — 2] + 5 (ACs + BDo)B =0,
__ _ - 1 —— —— —
s+ Ca[ 7 (2 +B2) +3(C2+ D)~ 21 + 5 (AG+BDIA=0.  (45)

Obviously, As = Bs = Cs = Ds = O isasolution of (4.5). The non-zero solutions of (4.5) can
be classified as semi-trivial (that is, AS BS =0o0r Cs=Dg=0) or as non-trivial (that is,
As + 0 or Bs # 0 and Cs = 0 or Dg # 0). After some calculations (see Appendix 5.1) it will
turn out that four types of critical points of (4.2) withay = o, = 0 can be distinguished:

CP-type 1: (As,Bs,Cs,Ds) = (0,0,0,0),
CP-type 2: ('KSv B_s,657 D_s) = (_§Sv |-s>s, —Ds, Dy),
CP-type3: (As,Bs,Cs, Ds) = (Bs, Bs, Ds, Ds),
CP-type4: (As,Bs,Cs,Ds) = (Ag,Bs,Cs,Ds), where (ABs+CsDs) < 0
and ADs— BDs + 0. (4.6)

The second and third type of critical points describe semi-trivial Bs = 0 or Dg = 0) and
non-trivial (Bs # 0 and Ds + 0) solutions, respectively, and these solutions describe a pla-
nar motion of the string. Whereas the fourth type describes non-trivial solutions. These
solutions describe a non-planar (whirling) motion of the string.

The critical point of type 1 exists for all values of the parameters, but its stability depends
on the parameter values. In what follows a (n, B)-diagram will be constructed which gives
an overview of al possible critical points. Starting withAs = —Bs and Cs = —Dg it follows
after some calculations (see also Appendix 5.1) that a critical point of type 2 satisfies:

~ ~ 2 _ =
Bs+D5=3(21+B),
Cond; = (211 +B) > O. (4.7)
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The curve defined by Cond; = (2n + B) = 0 divides the (1, B)-plane into two domainsin
which the CP-type 2 exists or not. When one looks separately at the caseAs = Bs and
Cs = Dg acritica point of type 3 satisfies (see Appendix 5.1):

52,82 20— o
B +Ds = g(zﬂ - B)u

Cond, = (2n —B) > 0. (4.8)

By setting Cond, = 0 one obtains a curve on which critical points of type 3 can be found.
It follows from (A.7)-(A.11) (see Appendix 5.1) that a critical point of type 4 satisfies.

A2+ G245 2n,
Asés + ésljs :_—ZB,
Condz =n—f>0. (4.9)

The resulting boundary curves and domains on or in which the different types of critical
points can be found, are presented in Fig. 2. The types of critical points and their stability
in different domains and on different boundary curves are given in Table 1.

¥ - - 1

Figure 2: Four domains with real solutions of type 1 - 4 of system (4.5) in the (1, B)-plane
for &1 = &2 =0.

Looking at (4.7), (4.8), or (4.9) one sees that for fixed parameter values the number of
critical points of type 2 - 4 (when existing) isinfinite, and these critical points can be con-
sidered as curvesin afour dimensional space, namely the curves S, U, and L, respectively.
The characteristics of the curves S and U are similar, while the characteristics of the curve
L aredifferent from the others. The characteristics of the curve S are: the projection of this
curve on the (A, Bs) ((Cs, Ds)) -plane isastraight line passing through the point (0,0) with
gradient -1, while the projections on the (As,Cs) ((Bs, Ds) and (As, Ds) ((Bs,Cs))-plane are

circles with radius pg, where pd = 4 /%(2ﬁ +B). The characteristics of the curve L are:
the projection of this curve on the (A_\S, B_S) ((53, 55)) -plane is an ellipse, projection on the
(As,Cs) ((Bs, Ds)) -planeisacircle, and projection on the (A, Ds) ((Bs,Cs)) -plane leads to
two ellipses. Thisisillustrated in Fig. 3.
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Table 1: Thecritical points of system (4.2) and their stability foro; = o, = 0. The stability
is determined by using the linearisation method.

Domaing/ number of location of the behaviour
curves critical points critical points in system (4.2)

| and OO, 1 (0,0,0,0) stable (" 4d-center”)

Il and OO, 2 (0,0,0,0) unstable ("4d-saddle)

(—Bs,Bs,—Ds,Bs)  stable (degenerate)

Il and OO3 3 (0000 stable ("4d-center”)
(— Bs, Bs, —Ds, Ds) stable (degenerate)
(Bs, Bs, Ds, Ds) unstable (degenerate)

v 4 (0,0,0,0) stable ("4d-center”)
(— Bs, Bs, —Ds, f)s) unstable (degenerate)
(Bs,Bs,Ds,Ds)  unstable (degenerate)

(A& 357 C~s; 55) stable (degenerate)

@ (b) (©

Figure 3: Projection of the curves S, U, and L for oy = &, = 0 andn > B on: (a) the (As, By)
((Cs,Ds)) -plane; (b) the (As,Cs) ((Bs,Ds)) -plane; (c) the (As, Ds) ((Bs,Cs)) -plane (with

po =1/3(2n—B) and p, = /2n). The solid and dashed line represent stable and unstable
solutions, respectively.

Now we define the hyperplane Gg by using the first integral (4.4), whereoy = o, = 0, as
follows: o .
GE = {(As, Bs, Cs, Ds) ‘G(As, Bs, Cs, Ds)‘ = E7 E Z 0} (410)

It follows from (4.4) that the sol utions of (4.2) satisfy As(t)Ds(t) — Bs(t)Cs(t) = As(0)Ds(0) —
Bs(0)Cs)(0). This shows that the hyperplane Gg isan invariant for (4.2) withoy = o, =0,
for al E. The critical points of type 1 belong to the hyperplane &. It also follows from
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(4.6) - (4.9) that the critical points of type 2 and 3 are in the hyperplane G, while the

critical points of type 4 are in the hyperplane Gz with E =2, /M2 — B2. Hence, the other

hyperplanes Gg with E + 0 and E # E have no singular points when o = 0, = 0. How-

ever, in these hyperplanes the solutions of (4.2) are bounded, because the hyperplanes Ge

with E # 0 and E # E areinvariant for (4.2) with o = o = 0. _

Inthe (A, Bs,Cs, Ds)-space the critical point of type 3is unstable forn > %B and the critical

point of type 4 is stable (in the sense of Lyapunov) forn > B, whereas the critical point of

type 2 is stable for —3B <m < B and unstable forn > B. It shows that for n > B there is

asolution of (4.2) with initial conditions in a neighbourhood of the critical point of type 2
which goes away from that point. In the hyperplane & the critical points of type 2 and 3
are degenerate points. Therefore, to study the behaviour of these points and the origin, we
introduce the hyperplane Hy:

{('A_‘SuB_S7c_SuD_S)EGO|iA_\S:kC_SandB_5:kD_S} W|thk€R,
Hy = (4.11)
{('&578_57@763)eGO’C?S:oandISs:o} for k = d-oo.

It is clear that the hyperplane Hy is an invariant of (4.2) for a; = o = 0. Also, one sees
that the union and the intersection of H are
UHk=Go and [Hk=0(0,0,0,0),
K k

respectively. The intersection points of the hyperplane H, with the curve S are the points
S (kg , Fkpy, £pi, Fpy ), where:

p-‘r
o = 1+°k2 V(1+K2). (4.12)

Whereas the intersection points of the hyperplane Hc with the curve U are the points
Ug (kpy , Tk £pyc, TPy ), Where:

P = 1i°k2 (1+K2). (4.13)

In the hyperplane Hy the critical point O(0,0,0,0) is unstable in domain Il in Fig. 2 and
stable in the other domains. The points § are stable (centers in the hyperplane Hy), while
the points Uki are unstable (saddle points in the hyperplane Hy).

The values of n and B as function of s (the mode number determined by the excitation-
frequency) are strictly monotone decreasing. It follows from the first equation of (4.7)
that large amplitudes of a periodic solution of type 2 is most likely for a low frequency
of the excitation. Moreover, it follows from (4.9) that also large whirling motion can only
occur in the low frequency case. Therefore the effect of parametric excitation will be most
significant to the system for low frequencies as aso mentioned in [7]. Asillustration some
values for the parametersm and B will be taken. _
In Fig. 4 the response curves r; = \/AZ + BZ are plotted as function of 1 for a fixed -
value. In this figure the response curves for the critical points of type 2 and of type 3 are
given for k =1 (that is, Hy), so that asimilar figure for the response curvesr, = /C2 + D2
isfound. It should remarked that for other values of k similar results are obtained. In the
H1-plane each point on the curve type 2 represents two centers, whereas on the curve type



On the planar and whirling motion of a stretched string 11

r CP-type 4
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Figure 4: The stability response-curves r, = /AZ+ BZ with respect tom for system (4.2)
with oy = 0 = 0 and B = 1.25: The curves for CP-type 2 and 3 represent response-curves
in Hy for k = 1 and the curves for CP-type 4 with ky = —2kq, where k; = % and ky = gi,
represent response-curves of periodic solutions with all of the components non-zero.

3 each point represents two saddle points. The bifurcations (for increasing values ofn) of

the critical points of (4.2) in the hyperplane H; will now be considered. Form < mny only

the trivial critical point exists, and it is stable (center). Whenn passes 1; this solution

bifurcates into two stable critical points of type 2 and an unstable trivia critical point.
Finally when 1 passes 1), thetrivial critical point again bifurcates into two unstable critical
points of type 3 and a stable critical point. Asillustration these results and the behaviour
of the solutions are givenin Fig. 5. .

In Fig. 6 the response curvesr; are given as function of B for afixed value of . Thisfigure
clearly indicates that the whirling motion can only occur for relatively small excitation
amplitudes (that is, B <n). Hence, for larger amplitudes the string is always moving in
the plane. One can also see that for increasing excitation amplitudes the amplitudes of the
periodic solutions become larger.

InFig. 7 thetypes of motions of astretched string as model ed by system (4.2) are described.
These motions can be planar or non-planar (whirling) motions. In this figure the analytic
solutions are compared with the numerical results as obtained by using a Runge-Kutta
method. One can see that both results are very close to each other. Fig. 7(b) and Fig.
7(c) describe the planar motions corresponding to the critical points of type 2 and 3 in the
hyperplane H; and H_1, respectively. If the motions correspond to the critical points of
type 3 then these motions are always unstable. Whereas the planar motions corresponding
to the critical points of type 2 are stable for —%B <m < B and unstable forn > B (see Table
1). Theinstability of planar motion type 2 gives way to awhirling motion, that is, the string
begins to whirl like ajump rope as presented in Fig. 7(d) and 7(g). These whirling motions
are a consequence of the equal frequency of the motions in both planes, while the phase of
them is different. Thus, the motion is composed of two modes which are strongly coupled.
Fig. 7(d) and Fig. 7(e) describe the whirling motions corresponding to the type 4 in case
AsBs = 0. Theinclination of the motion curve depends on the phase difference ¢ = ¢ — ¢,
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Flgure 5. Behaviour of the critical points of system (4.2) in the hyperplane H for k=1,
oy = o =0, and B = 1.25. The horizontal and the vertical axis are theAs (or theCs) -axis

and the Bs (or the Dg) -axis, respectively.
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Figure 6: The stability response-curves r; = /A2 + BZ of system (4.2) with respect to E
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(a) type 1 (b) type 2 (k=1) (c) type 2 (k=-1) @d3n<o<2n

@n<o<n  (o—-2ak—-2  (@k—-2kk—2
Figure 7. The types of stable motion of the string for oy = o = 0, n = 1.6014, and

B = 1.2159. Thefirst three figures describe planar motions, while the other figures describe
whirling (non-planar) motions.

where ¢, and ¢,y are the phase of the in-plane and out-of-plane mation, respectively. Similar
results can be obtained for the other cases.

4.2 The case with (positive) damping: o, 0 >0
Thecritical points of system (4.2) withaiy, o, > 0 satisfy the following algebraic equations:
_ —r1 — 9 1,-—= = =
(B+)As +Bs| 3 (B(A2+ B2) + (C2+D2)) — 201 + 5 (ACs +BsDg)Ds = 0,
-1 — 9 01 —= —— —
7 (3(R2+B2)+ (C2+D2)) — 21| + 5 (AGs+ BDS)Cs = 0,

2

(B +002)Cs + e[ 7 (B2 + B2) +3(C2 + D)) — 2] + 5(ACs + BsDe)Bs =0,
1
2

— a1 —= —— —
(B~ 2)Ds+Cs| 7 (A2 + B) +3(C2+ D2)) — 21| + 5 (ACs+ BsDs) As = 0.
(4.19)
From system (4.14) one can derive the following equation:
(0 + B)AZ+ (0 + B)CZ+ (0t — B)BZ + (0 — B)DZ = 0. (4.15)

Obvioudly, for 0,0 > B system (4.14) only has the trivial solution as a solution, that
is, the origin O(0,0,0,0), and this is a stable solution. Moreover, foray = ap = B the
components As and Cs of the semi-trivial and non-trivial solutions of (4.14) are zero. So,
in that case the critical points of (4.2) are in the (Bs,Ds)—plane. These points exist for
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n > 0 and are unstable (degenerate) solutions, while the origin is a stable solution. In this
subsection the study will be divided into two cases: o;; = o, and oy # .

421 Thecaseoy=0o=0

In this case it follows from (4.4) that the solutions of system (4.2) satisfy (As( )Ds(t) —
Bs(t)Cs(t)) — 0 ast — . Therefore, for given initial conditions in the hyperplane Ge, for
arbitrary E, the solutions of (4.2) move into the hyperplane & ast tends to infinity. This
means that the critical points of (4.2) can only be found in the hyperplane G. Moreover,
the stability of the critical points in the (As, Bs,Cs, Ds)-space is exactly the same as in the
hyperplane Gg.

Clearly, the origin O(0,0,0,0) isalways acritical point of (4.2). The critical points of (4.2)
can be classified as follows (see Appendix 5.2 for the calculations):

type 1: (As, Bs,Cs, Ds) = (0,0,0,0),

type 2: ('A_‘Sa B_S7C_57 DS = ~ [ B aBS) 857 B
type 3: (As, Bs,Cs, Ds) = ( B-oy 5 [B-og Bs) (4.16)
. Sy PSSy S I3+a, S, Sy B+a Sy ~s)- .

The critical points of type 2 and 3 describe semi-trivial and non-trivial periodic solutions.
As mentioned above for = o the critical points of type 2 and 3 are in the (Bs, Ds)-plane.
It follows from (A.18) and (A.19) that the components Bs and Ds of the critical points of

type 2 satisfy:
R !
S

Cond, = (20 + /B2 — 02) > 0, (4.17)

whereas the components of the critical points of type 3 forBs and Ds satisfy:

Bo
3p

Conds = (21 — /B2 — 02) > 0. (4.18)

Comparing this case to the case without damping one sees that the presence of positive
damping leads to the disappearance of the critical points of type 4. Therefore, in this
case the whirling motion does not occur. In the other words, the string only moves in a
hyperplane.

For o; = o, = o an overview of the existence and the stability of the critical points of type
2 and 3 for system (4.2) isgiven in Fig. 8. In this figure six domains can be distinguished.
The type of critical points and their stability in the different domains and on the boundary
curves are completely given in Table 2.

Looking at (4.17) and (4.18) one can see that for givenn, [3 and o such that 2n > [3 > o,
system (4.2) has an infinite number of critical points of type 2 and 3. The collection of
these points can be described by two curves, namely $* and U%, in the four dimensional
(As, Bs,Cs, Ds)-space. For B > o, the projection of the curves S* and U* are exactly same
asthe projection of the curves S and U in the case without damping, respectively. However,

B2+ D2 =22~ (20— /B2 —02),
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=1

15

Figure 8: The six domains describing the critical points of system (4.2) in the fy, B)-plane

for &1 :&2 =0l

the stability on these curves S* and S is quite different forn > B. Now we let B vary while
o is kept fixed. If B decreases to o then the curve S* tends to the curve U* and when f3
is equal to o these curves coincide. The projection of the resulting curve to the As, Bs)
(or (Cs,Ds)) -plane and the (Bs, Ds)- plane are a segment of aline and a circle with radius

Pa = 1 /%ﬁ, respectively, as has been shown in Fig. 9. If Edecreas& such that E< o, then

the curve U% disappears.

o
| —= curve S

@

(b)

Figure 9: Projection of the curves $* (= U*) for oy = o = [§ andn > 0to: (a) the (As, Bs)
(or (Cs,Ds))-plane ; (b) the (Bs,Ds)— plane. The dashed line represents unstable solution.

The hyperplanes Hy, for al k, defined by (4.11) are still invariants of system (4.2) for
oy = op. Therefore, one can study the stability of the critical points in these planes. The



On the planar and whirling motion of a stretched string

16

Table 2: Thecritical points of system (4.2) and their stability in the hyperplane G for oy =

B+

\/ ﬁ;g The stability is determined by using the linearisation method.

Domaing/ number of location of the behaviour in the
curves critical points critical points hyperplane G
[, 1V 1 (0,0,0,0) stable (focus)
1, OP;, OPs 1 (0,0,0,0) stable (node)
[l 2 _ (0000 unstable (saddle)
(_Bués, Bs, _Bocf)s, 55) stable (degenerate)
V, PsPs 3 (0000 stable node
(—BoBs,Bs, —BuDs,Ds)  stable (degenerate)
(Bo.Bs, Bs, B Ds, Ds) unstable
VI 3 _ (0000 stable focus
(_[}aéSv éSv :B()Llj& 53) Stable (d@enereﬁe)
(Bo §57 éSa Bo 55, 55) unstable
P,P; 1 (0,0,0,0) stable (degenerate)
PPs 2 (0,00,0) stable node
(0,Bs, 0,Ds) unstable (degenerate)
PPy 2 (0000 unstable (degenerate)
(—BoBs,Bs, —BuDs,Ds)  stable (degenerate)
PP 2 (0,0,0,0) stable focus
(0,Bs, 0,Ds) unstable (degenerate)

intersection between the hyperplane Hy with the curves S* and U* are:

S:t

(oK)

( + kBaszk) , IkaZEx’k) , :l:BOLp?;Lk) Y

+

Szz,k) ( :l: B(sz:x’k) 9 :Fp?;“k) 9 Oa 0) )

and

Ui

(ouk)

( + kB(Xp(_oc,k)’ :ka(_cx,k)’ ItB(xp(_mk) , TP

U(:;k) (iBup(a7k)7 :Fp(:xJ() ) 07 O) )

(auk)

(oK)

), for real K,
for k = oo,

), for real k,
for kK = d-oo,

(4.19)

(4.20)
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respectively, where:

+
fjrkaz (1+Kk?) ;0<k<eo,
Plok) = } (4.21)
Pa ; K= doo,

with p = \/ %E“) (2n =+ 4 /62 — 02). In the hyperplane H the points %’k) are asymptot-

ically stable while the points Ul &€ unstable (saddle points).
Tl —— : Stable /_,-f‘ :; —— : Stable - g
M1 Unstable T ’ o
/_,./ ----  Unstable ,
//’//" 4
s 06 e
CP-type2 | 7 g ’
(with k=1) )
/ CP-type3 g o £ CP-type 2
’ -type s ’ ST7 o T
. withk=l) <— , (with k=1)
//, Vs , 4
4 /
/_.' 02
;  CP-iypel CP-type1 |/
/ 0 i [
‘ﬁz ‘ﬁl 1_]ll ﬁz ﬁ ‘ﬁl ﬁl
-5 0 05 10 04 -02 0 02 04 06
@p=125 (b)p=0.75

Figure 10: The stability response-curves r; = /AZ+ BZ of system (4.2) as function of n
in the hyperplane Hi for k = 1, with oo = 0.75.

The response curves of the periodic solutions r; as function of 1 in the hyperplane H; are
given in Fig. 10. Let us suppose that m increases while Bs and o are kept fixed such that
Bs > a. This process is represented by the line through the points -1, —11, N1, andnz in

Fig. 10(a). Starting withn < —m3 only the CP-type 1 (trivial solution) exists, and it is a
stable focus for n < —m» and a stable node for —n> < 1 < —n1. Between —11 and 11 the
CP-type 1 is unstable and two stable critical points of type 2 come in. Beyond the pointn

an unstable critical point of type 3 occurs while the CP-type 1 is again a stable solution and
the critical points of type 2 are also stable. Anillustration of the behaviour of the solutions
in the hyperplane H; (of course the same results are obtained for the other hyperplanes) is
givenin Fig. 11 for several values of n. _

Now let us consider the case thatn is varied and o = 3 (see also Fig. 10(b)). In this case
the characteristics of the solutions differ from the casefy > . It can be seen clearly that

the critical point of type 1 is aways astable solution, while the critical points of type 2 are
unstable solutions. Hence the damping is responsible for the stabilization of the trivial so-
[ution. Moreover, the value oo =3 is acritical (minimum) value of the damping parameter

such that there is eventually no oscillation in the string. The behaviour of the solutions is

shown in Fig. 12 for several values of 1. In this figure the critical points U(j& y are saddle-

nodes. It can readily be seen that by increasing the values of § from a the points U(j(;,l>

bifurcate into two stable critical points % ) and two unstable critical points U(j(; ) ashas
been shown in Fig. 11.

If an experiment is done for which the excitation frequency A is held fixed, but is near a
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(b) 7 = —0.625 (©n = —0.60

(d) 1= —0.50

055 -019 0 o1 055

() = 0.60 (h)n =0.63 (i)n = 0.80

Figure 11: Behaviour of the solutions near the critical points of system (4.2) in the hyper-
plane Hy for k=1, oo = 0.75, and B = 1.25. The horizontal and vertical axis are theAs (or

C,) -axis and the B (or Ds) -axis, respectively.

resonance frequency, while the excitation amplitudep is varied slowly, ajump phenomena
from the trivial solution to the periodic solution of type 2 in the plane can be observed.
Suppose that the experiment is started at 3 < 1 asindicated in Fig. 13. Asf increases to

B3, the amplitude of the periodic solution in the hyperplane H; is still zero. This means
there is no motion in the reference plane H;. When 3 passes B3 a jump upward takes
place from the point B3 to the point 35, with an accompanying increase of ry, after which
ri increases slowly for increasing 3. If this process is reversed, r; decreases slowly asf3

decreases from the point 3/, to the point 5. As 3 decreases further ajump downward from
the point (3 to the point 1 takes places, with an accompanying decrease in 11, after which
ry iszero for decreasing B. Soit can be concluded that for increasing values of 3 the trivial

solution becomes unstable. Thisimplies that the string is always moving for large enough
excitation amplitudes.
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(b) 7 = —0.36 (©) 1 = 0.00

086+ ::_,_‘___‘_‘_

or2 — e
Vs

::6(, U@W
(d) 7 = 0.375 (&1 =0.39 =075

Figure 12: Behaviour of the solutions near the critical points of system (4.2) in the hyper-
plane Hy for k=1 and oo = 3 = 0.75. The horizontal and the vertical axis are theAs (or Cs)
-axis and the B (or Dg) -axis, respectively.

: £ o
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Figure 13: The stability response-curves r; = /A2 + BZ of system (4.2) as function of |§in
the hyperplane Hy for k =1, oo = 0.75, and n = 0.75.

4.2.2 Thecase oq # o

In this case (4.4) is still afirst integral of system (4.2). Therefore the critical points of
system (4.2) are only in the hyperplane Gy. Moreover, the stability of the critical points of
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system (4.2) in the (As, Bs,Cs, Ds)-Space is the same asin Gy. By using a similar procedure
asin Appendix 5.2 the types of critical points of system (4.2) are:

type 1: (As,Ds,Cs,Ds) = O(0,0,0,0),

R —— - B-a . _ B— o
typez: (A57D57CS7DS) - (i(z_l) B 1p;xtlv:F(2_l)p(—xtlv:t(l_l) B 2p+

&27

B-i-&]_ [3-1—&2
:F(I_l)p(—xtz>7
A D . C. P — i E_&l = _i)p= i — E—&Z e
type3-(As,Ds,Cs,Ds)—(i(2 I)\/BJralpalai(Z )pgy, (i 1)\/B+a2pazv
(i~ 1)p3,). (4.22)

wherei = 1 or 2. Inthis case the critical points of type 2 and of type 3 only represent semi-
trivial solutions and the existence of them follows from the conditions 4 and 5in (4.17) and
(4.18). This shows that the difference in damping values of o;; and o, causes the singular
points of system (4.2) to be in the planes H.. and Hp. These planes are still invariants of
system (4.2). Moreover, it turns out the in-plane and out-of-plane periodic solutions do
not interact, and that the damping in both planes influences the stability of the periodic
solutions.

-0,

Figure 14: The stability diagram of the critical points of system (4.2) in the f, E)-plane
for o < oo.

We assume, without loss of generality, that the values of oy and o, satisfy 0 < oip < 0.
The critical points in the plane Hy, of course, can be expected to appear after increasing
the excitation amplitude such that B > o,. The stability diagram of the periodic solutions
in the hyperplane Gg is given in Fig. 14. In this figure nine domains are defined in which
the behaviour of the periodic solutions can be different. The curvesin Fig. 14 arefound in
asimilar way as for the case oy = ;. We note that the existence of the critical pointsin
the planes Hg and H.. are independent of o; and o, respectively. However, the behaviour
of the solutions depends on oy, and oc,.
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Let us now analyze in more detail how the behaviour of solutions changes in the @, B)-
plane by considering Fig. 14. If m,P) liesin the domain I, there is only one critical point
of type 1 which is astable focus. For (1, 3) on the curves OQ; and OQy or in the domain
1, there is still one critical point of type 1 but now it is a stable node. For (,3) in domain
I11 two new solutions of type 2 in H., occur and these are stable, while the critical point of
type 1 now becomes unstable. For the other domains and curves an overview of the number
of critical points and their stability is givenin Table 3.

Table 3: The critical points of system (4.2) and their stability in the (As, Bs,Cs, Ds)-space

for 0 < 0y < a2 and P, = ,/%,i =1 or 2. The stability is determined by using the

linearisation method.

Domaing/ location of the behaviour in the
curves critical points critical points hyperplane G
' (00,0,0) stable focus
I1, OQ1, and OQ4 (0,0,0,0) stable node
i (0000 unstable
(+B&Ps; s TPy, 0,0) stable
IV _(0,0,0,0) unstable
(£BaPg, s FPy;+0,0) stable
(0,0,+Bwp, FPa,) unstable
V and Q4Qio ~ (0000 stable 4d-node
(+Baps, FPy,50,0) stable
(+B&Pg,> +Pg,,0,0) unstable
Vi ~(0,0,0,0 stable 4d-focus
(£BaPs, s FPy;+0,0) stable
(£B&Pg,: g, 0,0) unstable
Vil (0,0,0,0) unstable
(+Baypg, FPy,50,0) stable
(07 07 i@&z p:;rz, q:pgz) unstable
(0,0,£B&,pa,» £Ps,) unstable
VI and Q10Q13 _ (0000 stable 4d-node
(£BaPs;s TPy, 0,0) stable
(£Baupg,, +p5,,0,0) unstable
(0,0, +B%,Pa,, FPa,) unstable
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QQs
Q2Q4

Q2Q6

QQs

Q7Qsg
QeQ7

Q1Qo

Q6Q10

QeQu11

Q10Q12

(0,0,+Ba,p3,. £P3,)

. (0,0,0,0)
(:l:l}alpjx_—]_? jFP&—_laOa 0)
(£Bepg,, £Pg;+0,0)
(0,0,+Bs,Pz,, FPs;,)
(07 0, iB&zpézv :l:p(iz)

(0,0,0,0)

(0,0,0,0)
(0,£p¢,,0,0)

~(0000)
(£B&pg, Fra,,0,0)

(0,0,0,0)
(0,%pg,,0,0)

. (0,0,0,0)
(+Beupg, - FPe;-0,0)
. (0,0,0,0)
(iB&lp(Jx_rlv :chxilv 0,0)
(07 07 07 :l:pjxiz)

(0000
(+Bapg, FPs,+0,0)
(0,0,£Ba,pg, TrE,)

B (0,0,0,0)
(iﬁ&lp&_—lv ?P&iaoa 0)
(:l:B&lpél7 :l:p(il’ O’ 0)

(0,0,0,+pg,)

(00,00
(+BwPg, TPa,,0,0)
(0,0,£Bs,Pg,, FPy,)
(0,0, £Ba,Pg,: £Pg,)

~(0000)
(+Baps, FPy,50,0)

(:tB(le(Ilv :I:p(;lv oa 0)
(0,0,0, j:pj;‘z)

unstable

stable 4d-focus
stable
unstable
unstable
unstable

stable (degenerate)

stable 4d-node
unstable (degenerate)

unstable (degenerate)
stable (degenerate)

stable ("4d-focus’)
stable (degenerate)

unstable (degenerate)
stable
unstable
stable
unstable (degenerate)

unstable (degenerate)
stable
unstable (degenerate)

stable (" 4d-node”)
stable
unstable
unstable (degenerate)

unstable (degenerate)
stable (degenerate)
unstable
unstable

stable 4d-focus
stable
unstable
unstable (degenerate)
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Toillustrate these results, we humerically integrate system (4.2) and give severa projected
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Figure 15: Behaviour of the solutions near the critical points of system (4.2) projected
to the (r1,rp)-plane; r1 = \/AZ+ BZ is the horizontal axis and r, = 1/C2+ D3 is the the
vertical axis. The first four figures describe the caseoy < B < o (0 = 0.65,0, = 0.90,
and B = 0.81) and the other figures describe the caseoy < o < B (0p = 0.65,0, = 0.77,
and = 1.01).

trajectories for different values of | and 3. Because a reduction of system (4.2) to alower
dimension seems to be impossible, the trgjectories are projected on the (r, r2)-state plane
ashasbeen showninFig. 15. For oz < B < o, the periodic solutions of type 2 and 3 do not
exist in the hyperplane Ho. Hence, one only expects periodic solutions in the hyperplane
H.. (see Figs. 15 (8)-(d)). The stability of the critical pointsin the (As, Bs,Cs, Ds)-space is
the same as in the hyperplane H... Whereas for a; < o, < B, one can expect the periodic
solutions of type 2 and 3 to exist on both hyperplanes Hy and H.... In this case the stability
of the periodic solutions Uz, .., and Sz, inthe full system is still similar. However, the

stability of the periodic solutions Sﬁ 0 isredlly different. We know that the points S?E 0)

are stable foci in the hyperplane Hy but become unstable solutions in the full system. This
phenomena s caused by the difference in damping. These results are shown in the last four
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figures of Fig. 15.

Conclusions

In this paper the dynamics of a stretched string suspended between a fixed support and a
vibrating support has been studied. Due to a parametric (longitudinal) excitation the string
can vibrate in vertical direction. When the frequency of the parametric excitation is near
twice alinear natural frequency the amplitudes of the string oscillation can become large.
In this paper the attention is focused on the existence and the stability of (almost) periodic
solutions. There are four parameters (i.e. the damping coefficientsa; and o, the excitation

amplitude B, and a detuning coefficient n), which influence the ultimate oscillations of

the string. The study is divided into two cases. no damping (i.e. o1 = o, = 0), and

positive damping (i.e. o, 0 > 0). When there is no damping stable whirling motion, and

stable planar motion can occur. With positive damping only planar motion can occur. A
classification of al (almost) periodic motions and their stability is given.

5 Appendix

On the types of critical points of system (4.2)
51 Thecase:a;=0,=0
5.1.1 Identification of the semi-trivial solutions
Starting with As = Bs = 0, then equation (4.5) becomes:

— _ 3 _ _

BCs+Dsl; (C24+D2)—2n] =0,

- _ 3 _ _

BDS+CS[Z(C§+D§)—2rﬂ =0. (A1)
Since CS and Ds are not both zero it follows from (A.1) that CS = iDS # 0 under the
condition B2 — [3(C2+ D2 - 2n]* = 0. Hence, if Cs = —Ds then a semi-trivial solution of
(4.5) corresponds to a critical point of type 2, whereas forCs = Dg a semi-trivial solution
corresponds to acritical point of type 3, WhereBs =0. Simllarly it followsfromCs=Ds=0
that As = +Bs # 0 under the condition §2 — [3(A2 + BZ — 2n)® = 0. Again a semi-trivial
solution corresponds to a critical point of type 2 or 3.
5.1.2 Identification of the non-trivial solutions

Inthis caseit will turn out to be not so difficult to show that at most one of the sol utlonsA_s,
BS, Cs, and Ds is zero. We start with the case that all of the solutions are not zero. Setting
klcs and Bs = koDs, and then by substituting As and Bg into (4.5), one obtains:

koD2)Ds = 0,
kZBDs+k1cs[ (3¢ +1)C2+ (3G +1)DZ) — 20| + 2<k16§+
koD2)Cs = 0,

— _ — - 1
kiBCs+ kZDS[ ((3k§ +1)C2+ (3G +1)D2) — 20 + 5 (kC2 +
S —
2
1
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— 1 g 1
BCs+Ds| (16 +3)C2 + (6 +3)5Z) — 2] + sha(kaCZ +

L 2
koD2)Ds = 0,
2oL e ~2 2 52 51 ~2
BDS+CS[Z((|<1+3)CS + (k2+3)DS) . Zn] +Ska(aCZ+
koD3)Cs = 0. (A.2)

Multiplying the third equation of (A.2) with k and then subtracting this from the first
equation of (A.2), one obtains:

(ki — ko)Ce [(1+ kik2)CeDs + 2[?] —0. (A.3)
Similarly from the second and fourth equation of (A.2) one finds:
(ki — k2)Ds [(1+ kuk2)CsDs + zﬁ] —0. (A.4)

It follows from (A.3) and (A.4) that there are two cases. kb = ki and ky # k1. If ko = kg
(A.2) reduces to:

PG+ D[ S(1+ K2+ B) —27] =0,
s+ Ga[ (14K9)(C2 + D) — 2] =0 (A5)

The non-zero solutions of (A.5) are@ — 4D, under the condition that

B[S0+ @57 27 =0 (A.6)

This showsthat for k; = kz the non-trivial solutions of (4.5) correspond to the critical points
of type 2 (Cs = —Ds) and of type 3 (Cs = Ds). For k; # k; it follows from (A.3) that the
non-trivial solutions of (4.5) satisfy

1 - —

It then follows from (A.7) that system (A.2) reduces to:

(1+K))C3 +3(1+K5)DZ — 81 =0,
3(1+K3)C2+ (1+k2)D2 — 87 = 0. (A.8)

The non-zero solutions of (A.8) are given by:

(1+K3)C2 = (14+k3)D2 = 2n. (A.9)

7]

Therefore, non-trivia solutions of (4.5) Withé #* %z correspond to the critical points of
type 4. L _

Now we consider the case that exactly one of A, Bs, Cs, and Ds is equal to zero. Starting
with As = 0, (4.5) can be simplified to:

— 1__

B+ ECSDSZO’

B2+C2+D2—4n=0,

3B2+C2+3D2—8n=0. (A.10)
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From (A.10) one finds:

AS+CE=Bi+DZ=2n,

AsBs+CsDs = —2B, (A.11)
where A; = 0. In a similar way the other cases can be treated, and one obtains (A.11).
This means that non-trivial solutions of (4.5) with one of their components equal to zero,
correspond to the critical points of type 4.
5.2 Thecase: og,00 >0
5.2.1 Identification of the semi trivial solutions

Starting with As = Bs = 0, (4.13) becomes:

w

(B + 0i2)Cs + 55[—(0_3 +D2) - 2ﬁ] =0,

wbh

(B—2)Ds+Cs[ 7 (C2+D2) 20| = 0. (A.12)

The non-trivial solutions of (A.12) areCg = +4/ %;% Ds under the condition:

— 3 — 12
(B2~ ) — | (C2+D2)—2n| =0, (A.13)
If Co= — %5& the semi-trivial critical point corresponds to acritical point of type 2,

whereas if Cs = \/ %S;&_: Ds, the semi-trivial critical point corresponds to acritical point of

type 3. Similarly for Cs = Ds = 0 one finds Ag = =+ %;%B_s under the condition:

— 3 12

(B2-) - |;(R+BY)-2n =0, (A.14)
Again, one obtains that the semi-trivial critical points correspond to critical points of type
20r3.
5.2.2 ldentification of the non-trivial solutions

In this case let As = k;Cs and Bs = k,Ds and substitute As and Bg into (4.14) to obtain:

I Py | N
ka(B+ @1+ 5CsD5)Cs + keDs| 3 (31 + 1)C2 + 3(4 + 1)D2) — 21| =0,

- 1 o oo ol —
k(B — -+ 5CsD5)Ds + kaCs| 3 (1€ + 1)C2 + (3G + 1)D2) — 20| =0,

— - _ 1 _-

(B+2)Cs+Ds| 7 (G + 2kake + 3)C2 + 3(G +1)D2) — 20 =0,

- _ - -1 — _

(B az)Ds+cs[Z(3(k§ +1)C2 4 (K2 + 2keko + 3)D2) — zn] —0.  (AI5)

Multiply the third equation in (A.15) with k and then subtract this from the first equation
in (A.15) to find:

(kl — kz) [%(l—l— klkz)(ssﬁs—i-lg] + kl&l — kzaz =0. (A.lG)
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Similarly it follows from the second and fourth equation in (A.15) that
1 —— = _ _
(ks — ko) | 5(1+ kake)CaDs + B] -+ kotts — kact = 0. (A.17)

By subtracting (A.17) from (A.16) one obtains (k — k)(0t1 + o) = 0. Since oy, o > 0,
it follows that k; = kp. Substituting k; = k; into (A.16) or (A.17) and one findso; = o or
ki = ko = 0. This means that for a non-trivial solution of (A.14) we should havea;; = .
In other words for oy # o (4.14) does not have non-trivial solutions. Substitution of
oy = o = o and k; = k3 into (A.15), one obtains:

(B+0)Cot SS[Z(H 1)(C2+D3) - 27| =0,

_ — 3 _ _ -
([3—oc)Ds+Cs[Z(l+ 16)(C2+D2) — 21 =0. (A.18)
The non-trivial solutions of (A.18) areCs = =+ / %Tg Ds under the condition:

(B? - o) - E(H k5)(CZ +D2) —zﬁ]2 =0. (A.19)

Hence, the non-trivial solutions of (4.14) correspond to the critical points of type 2 and 3.
For the case As = Cs = 0 it can readily be seen from (4.14) that Ds satisfies (A.19) with
o=0p.
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