
DELFT UNIVERSITY OF TECHNOLOGY
REPORT 10-20GPU Implementation of Deflated Preonditioned ConjugateGradientR. Gupta, C. Vuik, and C.W.J. Lemmens

ISSN 1389-6520Reports of the Delft Institute of Applied MathematisDelft 2010

Copyright 2010 by Delft Institute of Applied Mathematis, Delft, The Netherlands.No part of the Journal may be reprodued, stored in a retrieval system, or transmitted, inany form or by any means, eletroni, mehanial, photoopying, reording, or otherwise,without the prior written permission from Delft Institute of Applied Mathematis, DelftUniversity of Tehnology, The Netherlands.

GPU Implementation of De�ated PreonditionedConjugate GradientR. Gupta ∗, C. Vuik ∗ , C.W.J. Lemmens ∗Otober 18, 2010AbstratA Linear System of the pressure equation resulting from the Finite Di�ereneDisretization of Two-Phase Flows has been implemented and solved on the GPU.Conjugate Gradient(CG) Method was used to solve the linear system with two levelsof preonditioning. After implementing Blok Inomplete Cholesky on CG, De�ationwas applied as a seond level preonditioner to improve the onvergene rate. TheGPU versions of the ode bene�t from the parallelism available in de�ation step. Forimproving the parallel properties of the preonditioning step we use the novel, Inom-plete Poisson Preonditioning. The �nal version with two levels of Preonditioningdemonstrated up to 20 times speedup in the omplete solution when ompared to asingle ore CPU for a system of 1 million unknowns. Analysis of the results and abrief report on our experiments is presented.Keyword: Conjugate Gradient, Preonditioning, De�ation, GPGPU, CUDA1 IntrodutionLarge Sparse Linear Systems are mostly solved by Preonditioned Krylov Methods om-bined with some form of oarse grid aeleration. Spei�ally the onvergene of ConjugateGradient(CG) Method an be improved by Preonditioning. Many of the important build-ing bloks of these algorithms ould be optimized for exeution on parallel arhitetures.Reently, with the advent of General Purpose Computing on the Graphial ProessingUnit (GPU) it is possible to ahieve 10 − 100 times redution in omputing times. How-ever, some of the methods involved in the Solution of the systems of interest do not runoptimally on the GPU. In this paper we show that it is possible to ahieve 10 fold speedupfor a ombination of suitable building bloks.
∗Delft University of Tehnology, Faulty of Eletrial Engineering, Mathematis and ComputerSiene, Delft Institute of Applied Mathematis, P.O. Box 5031, 2600 GA Delft, The Netherlands,(r.gupta�student.tudelft.nl, .vuik�tudelft.nl, kees.lemmens�tudelft.nl)3

1 INTRODUCTION 4In this paper we use two levels of Preonditioning with the CG method to solve a linearsystem. This system arises from the disretization of the Pressure Corretion Equation.This equation is the most time-onsuming step in the solution of the Inompressible Navier-Stokes Equation using the Level Set Method. This method as suggested in [Pijl, Segal,Vuik, and Wesseling, 2005℄, is of interest to us in modeling Physial Systems, espeiallyBubbly Flows. The Partial Di�erential Equations desribing the Pressure Corretion havebeen disretized through the use of �nite di�erenes. The linear system is of the form
Ax = b, A ∈ R

n×n, (1)where n is the number of degrees of freedom. We assume that A is symmetri positivede�nite(SPD), i.e.,
A = AT , yTAy > 0 ∀ y ∈ R y 6= 0. (2)The linear system given by (1) is usually sparse and ill-onditioned. This means thatthere are few non-zero elements per row of A and also that the ondition number κ(A) isusually large. Put in other words, the ratio of the largest eigenvalue to the smallest is largeand this leads to slow onvergene of the Conjugate Gradient Method.

κ(A) : =
λn

λ1
(3)where 0 < λ1 ≤ λ2 ≤ ... ≤ λn are eigenvalues of matrix A. See [Saad, 2003℄ for moredetails.In order to have a smaller number of iterations for onvergene, the matrix A is pre-onditioned to bring down the ondition number from κ(A) to κ(M−1A). The oe�ientmatrix A is multiplied by M−1, the preonditioner (disussed in detail in [Meijerink andVorst, 1977℄). The original system (1) is then transformed into ,

M−1Ax = M−1b, (4)where M is SPD. M−1 is hosen in suh a way that the ost of the operation M−1y with avetor y is omputationally heap. However, sometimes preonditioning might also not beenough. In that ase we use seond level of preonditioning or De�ation in order to redue
κ(A). Details about the method ould be found out in [Tang and Vuik, 2007℄.In this work some previous results [Tang and Vuik, 2008℄ are used for implementation.The fous is to implement these methods on the Graphial Proessing Unit (GPU). Re-ently Sienti� Computing has largely bene�ted from the data parallel arhiteture ofgraphial proessors. Many interesting problems whih are omputationally intensive areideally suited to the GPU, espeially matrix alulations. It is only intuitive to use themfor solution of disretized partial equations. With the advent of the Component Uni�edDevie Arhiteture (CUDA) paradigm of omputing available on NVIDIA GPU devies,it has beome easier to write suh appliations. First we take up the work already doneon the GPU with respet to these iterative methods in the following setion. We alsobring out the ontribution this study makes that is di�erent from earlier results. Then we

2 RELATED WORK 5brie�y de�ne the problem of Bubbly �ows and a few words about the Two-Phase Matrixthat we are interested in solving in Setion 3. We take a short tour of the Iterative So-lution Methods in Setion 4 followed by some parallel implementations of preonditionersin Setion 5. Finally we disuss implementation of the Conjugate Gradient Method withPreonditioning on the GPU in Setion 6 supported by Numerial Results in Setion 7. We end this paper with onlusions in Setion 8. For more details we refer to [Gupta,2010℄.2 Related WorkA variety of studies have been done to study Iterative Solution Methods on the GPU. Someof them disuss optimizations of basi building bloks and optimization tehniques whihwe found useful for our work.2.1 Sparse Matrix Vetor Produts- SpMVsSparse Matrix Vetor(SpMV) Produts take up the majority amount of exeution timeduring the iterations of the Conjugate Gradient Algorithm. NVIDIA reently releaseda study, [Bell and Garland, 2008℄ in whih they ompare di�erent sparse matrix storageformats and suggest some new methods and representative kernels for ahieving upto 36GFlop/s in Single Preision implementations of the SpMV kernel. They also ompare theperformane of the GPU with several arhitetures like STI Cell, and CPUs like Xeon,Opteron et.A reent study, [Monakov and Avetisyan, 2009℄ suggests to store a Sparse Matrix ina hybrid ELL-COO format to ahieve maximum throughput in the SpMV kernel. Theirmethod relies on an initial sweep on the matrix to �nd out the number of non-zero elementsand the deision to divide the matrix into two di�erent formats(ELL and COO) for storage.The CUDA library an also be enrihed with CUDPP [Harris, Sengupta, Owens, Tseng,Zhang, and Davidson, 2009℄ whih provides a routine udppSparseMatrix, for sparse matrixvetor multiply whih omes in handy when applying iterative methods. To use a methodthe user �rst delares a P lan in whih the input output arrays, the number of elementset. are spei�edIn [M. Baskaran and Bordawekar, 2008℄ improvements are demonstrated over the meth-ods disussed above in [Bell and Garland, 2008℄ and [Harris, Sengupta, Owens, Tseng,Zhang, and Davidson, 2009℄ by exploiting some of the arhitetural optimizations to theSparse Matrix-Vetor Multipliation ode. In partiular the optimization e�orts are en-tered on the following four guidelines:
• Exploiting Synhronization-Free Parallelism,
• Optimized Thread Mapping,
• Aligned Global Memory Aess;

2 RELATED WORK 6
• Data-Reuse.We utilize the knowledge given in [Bell and Garland, 2008℄ to write our own version of theSparse Matrix Vetor Multipliation Kernel and ahieve a muh higher memory through-put.2.2 Conjugate GradientAligning onjugate gradient method to the GPU has been disussed in [Georgesu andOkuda, 2007℄. They also disuss the problems with preision and implementing preon-ditioners to aelerate onvergene. In partiular they state that for double preisionalulations problems having ondition numbers less than 105 may onverge and give aspeed-up also. They however warn that above a threshold value of the ondition num-ber the Conjugate Gradient Method will not onverge. This observation relates to thelimited(double) preision performane available on urrent GPUs.Implementing single preision iterative solvers on the GPU is explored in [Buatois,Caumon, and Levy, 2009℄. They limit the preonditioning to Jaobi-Type preonditioners.Further they report that for a limited number of iterations the GPU is able to providea solution of omparable auray but as the iterations inrease the preision drops inomparison to the CPU. In our results the relative error norm of the solution and thenumber of iterations required for onvergene remain the same on the devie(GPU) andthe host(CPU).2.3 PreonditioningTehniques that are basially dependent on the Sparse Matrix Vetor Multiply disussedin previous setions have been suggested in literature for aelerating Preonditioning ofIterative Solvers like GMRES and Conjugate Gradient. In [Wang, Klie, Parashar, andSudan, 2009℄ an ILU Blok Preonditioner is used, whih has poor onvergene qualities butis easier to parallelize, for solving a sparse linear system by the GMRES method. Coe�ientmatrix A is divided into equal sized sub-matries whih are then loally deomposed usingILU, as shown in Figure 1. The bloks shown in Figure 1 do not ommuniate to eahother during the deomposition and also in solving it, this sheme �ts well in the dataparallel paradigm.In [Asgasri and Tate, 2009℄ it is shown how a Chebyshev polynomial based preondi-tioner ould be utilized for ahieving speedups in the Conjugate Gradient method. The saidpreonditioner e�etively redues the ondition number of the oe�ient matrix therebyahieving onvergene quikly. It approximates the inverse of the oe�ient matrix withlinear ombinations of matrix-valued Chebyshev polynomials.In [Ament, Knittel, Weiskopf, and Straβer, 2010℄ a new kind of preonditioning alledthe Inomplete Poisson Preonditioning is presented whih takes the approximation of thepreonditioner as follows

2 RELATED WORK 7
M−1 = KKT (5)where

K = I − LD−1. (6)In equation 6, L is the lower triangular part of A and D is the diagonal of A. This isomparable to an SSOR type preonditioner.

Figure 1: Blok ILU preonditioner ���������	
�	���	��
	

������

�
������	�
�����
��

�����	�����

������	�����

��������ρ = 1000

��������ρ =1

Figure 2: Two-Phase Flow ComputationalModelThis preonditioner introdues some �ll-in (other than the normal sparsity pattern ofA) in the multipliation of K with KT . Their experiments suggest that the �ll-in ouldbe dropped due to it's omparatively small e�et on the preonditioning proess. Theonvergene might su�er however the method then maps well to the GPU. Hene theInomplete nature of the stenil that emerges gives the method its name. We utilizea ombination of IP Preonditioning and De�ation whih shows signi�ant performanebene�ts.2.4 Preision ImprovementThe GPUs have a omparatively low performane to Double Preision Computing. In[Baboulin, Buttari, Dongarra, Kurzak, Langou, Langou, Luszzek, and Tomov, 2008℄ dou-ble preision alulations are used for some part of the iterative method and single preisionfor others. Thus, ahieving a trade-o� that meets preision riteria and onverges as goodas the double preision ase. At the same time the rate of onvergene is also not af-feted very muh. They have reported the results for a non-symmetri solver wherein theouter iteration is FMGRES and the inner one (for alulating M−1) is a GMRES yle.The idea here is that a single preision arithmeti matrix-vetor produt is used as a fastapproximation of the double preision operator in the inner iterative solver.

3 PROBLEM DEFINITION 8All of our experiments have been in Single Preision. We progressively inrease theperformane gains by exposing higher levels of parallelism through the use of parallel Pre-onditioning Methods (IP) in plae of Blok Inomplete Cholesky Preonditioning whihhas omparatively less degree of parallelism. We also show how using arhitetural provi-sions within the GPU (e�ient oalesing, better data strutures, shared memory) one animprove the de�ation kernels. The end result being that we are able to produe speedupsof more than 20 times for a two level preonditioned Conjugate Gradient Solver. We havegot up to 5 times speedup for the Blok Inomplete Cholesky Preonditioned De�ated CGSolver. We are able to ahieve up to 68 GFlops/s on NVIDIA Tesla Hardware. To ourknowledge this is the �rst study that utilizes two level preonditioning on the GPU.3 Problem De�nitionComputations of Two-Phase (Bubbly) �ows is the main appliation for this implementa-tion. Two phase �ows are ompliated to simulate, beause the geometry of the problemtypially varies with time, and the �uids involved have very di�erent material proper-ties. This leads to large di�erenes in the Matrix oe�ients resulting from the disretizedPressure Corretion Equation. Mathematially bubbly �ows are modeled using the NavierStokes equations inluding boundary and interfae onditions, whih an be approximatednumerially using operator splitting tehniques. In these shemes, equations for the veloityand pressure are solved sequentially at eah time step. In many popular operator-splittingmethods, the pressure orretion is formulated impliitly, requiring the solution of a lin-ear system (1) at eah time step. This system takes the form of a Poisson equation withdisontinuous oe�ients and Neumann boundary onditions, i.e.,
−▽ .

(

1

ρ(x)
▽ p(x)

)

= f(x), x ∈ Ω, (7)
∂

∂n

p(x) = g(x), x ∈ ∂Ω, (8)where Ω, p, ρ, x and n denote the omputational domain, pressure, density, spatial o-ordinates, and the unit normal vetor to the boundary, ∂Ω, respetively. Right-hand sides
f and g follow expliitly from the operator-splitting method, where g is suh that massis onserved, leading to a singular but ompatible linear system (1). In an earlier work[Pijl, Segal, Vuik, and Wesseling, 2005℄ the subjet has been dealt at length about how theNavier Stokes Equation is utilized to model suh a �ow. In our experiments we are inter-ested in Solving the Linear System that results from disretization of equation 7. In Figure2 we present the simpli�ed Computational Domain that we work with in our experimentsfor generating a Two-Phase Matrix. We use a 5-point Stenil for a 2-D grid(n × n) with
N = n × n unknowns.The square domain in the Figure 2 is divided into two parts and an interfae andsurrounded by Neumann Boundary onditions. Finite Di�erene Disretization translatesthe Grid (imposed over the domain) to a matrix whih has oe�ients plaed on the 5

4 ITERATIVE SOLVERS 9diagonals with the jumps appearing at the interfae region. We follow a mass onservingapproah while alulating the oe�ients on the interfae. There is some �ux that entershorizontally and vertially and some of it leaves a ell. By taking the ell-entered approah(wherein the disretization point is at the enter of the ell) and taking into aount theontribution of all the �ows through that point, we arrive on stenils for individual pointson the grid. An example Stenil an be like
[−1 0 (1

1

2
+ 1

1

2
ǫ) (−

1

2
−

1

2
ǫ) −ǫ]. (9)for a point on the interfae and also adjoining the boundary. Here ǫ is the ratio of thedensities of the two mediums.4 Iterative SolversWe hoose the Conjugate Gradient Method for solving the Linear System arising from thedisretization of the Pressure Equation.4.1 Conjugate GradientThe algorithm for Conjugate Gradient is given by [Saad, 2003℄.Algorithm 1 Conjugate Gradient Algorithm1: Compute r0 := b − Ax0, p0 := r0.2: for j = 0, 1, ..., until onvergene do3: αj := (rj , rj)/(Apj, pj)4: xj+1 := xj + αjpj5: rj+1 := rj − αjApj6: βj := (rj+1, rj+1)/(rj, rj)7: pj+1 := rj+1 + βjpj8: end forTo improve the rate of onvergene of the CG method we apply subsequent levels ofpreonditioning.4.2 PreonditioningAfter Preonditioning we apply Conjugate Gradient to the system

M−1Ax = M−1b (10)where M−1A omes loser to I so that the method onverges to the solution muh fasteras ompared to plain CG. A host of Preonditioning methods are known [Saad, 2003℄. ILUPreonditioning and Inomplete Cholesky are the most popular.

4 ITERATIVE SOLVERS 104.2.1 Diagonal PreonditioningDiagonal or Jaobi Preonditioning is the simplest (and also the least e�etive) of the pre-onditioning methods that an be applied to the linear system Ax = b. The preonditionermatrix in this ase is the main diagonal of A.4.2.2 Inomplete Cholesky PreonditioningInomplete Cholesky Preonditioning involves a preonditioner of the form
M = LLT (11)where L is lower triangular. It is made 'inomplete' by dropping o� some of the elements.From the Cholesky fator we take the non-zeros that overlap with the sparsity pattern ofthe lower triangular part of A.4.2.3 Seond Level PreonditioningTo improve the onvergene of our method we also use a seond level of preonditioning.De�ation is an attempt to treat the remaining bad eigenvalues from the preonditionedmatrix, M−1A. This operation redues the onvergene iterations for the PreonditionedConjugate Gradient (PCG) method and makes it more robust.The linear system an be solved by employing the splitting

x = (I − P T)x + P Tx ⇔ x = Qb + P T x (12)
⇔ Ax = AQb + AP T x (13)
⇔ b = AQb + PAx (14)
⇔ Pb = PAx, (15)where

P = I − AQ, Q = ZE−1ZT , E = ZT AZ. (16)Here E ∈ R
k×k is the invertible Galerkin Matrix, Q ∈ R

n×n is the orretion Matrix, and
P ∈ R

n×n is the de�ation operator. Z is the so-alled 'de�ation-subspae matrix' whose
k olumns are alled 'de�ation' vetors or 'projetion' vetors. The x at the end of theexpression is not neessarily a solution of the original linear system, sine it might ontainomponents of the null spae of PA, N (PA). Therefor this 'de�ated' solution is denotedas x̂ rather than x. The de�ated system is now

PAx̂ = Pb. (17)The Preonditioned de�ated version of the Conjugate Gradient Method an now be pre-sented. The de�ated method (17) an be solved using a symmetri positive de�nite (SPD)preonditioner, M−1. We therefore now seek a solution to

4 ITERATIVE SOLVERS 11
P̃ Ãˆ̃x = P̃ b̃, (18)where

Ã = M− 1

2 AM− 1

2 , ˆ̃x = M
1

2 x̂, b̃ := M− 1

2 b, (19)and
P̃ = I − ÃQ̃, Q̃ = Z̃ ˜E−1Z̃T , Ẽ = Z̃T ÃZ̃, (20)where Z̃ ∈ R

n∗k an be interpreted as a preonditioned de�ation-subspae matrix.The resulting method is alled the De�ated Preonditioned Conjugate Gradient (DPCG)method (details in [Vuik, Segal, and Meijerink, 1999℄).Algorithm 2 De�ated Preonditioned Conjugate Gradient Algorithm1: Selet x0. Compute r0 := b − Ax0 and r̂0 = Pr0, Solve My0 = r̂0 and set p0 := y0.2: for j:=0,..., until onvergene do3: ŵj := PApj4: αj :=
(r̂j ,yj)

(pj ,ŵj)5: x̂j+1 := x̂j + αjpj6: r̂j+1 := r̂j − αjŵj7: Solve Myj+1 = r̂j+18: βj :=
(r̂j+1,yj+1)

(r̂j ,yj)9: pj+1 := yj+1 + βjpj10: end for11: xit := Qb + P T xj+1Note that P̃ or M
1

2 are never alulated expliitly. Hene the linear system is oftendenoted by
M−1PAx̂ = M−1Pb (21)Some Observations:All known properties of Preonditioned Conjugate Gradient (PCG) also hold for DPCG,where PA an be interpreted as the oe�ient matrix A after preonditioning. Moreoverif P = I is taken the algorithm above redues to the Preonditioned Conjugate Gradi-ent(PCG) algorithm.Careful seletion of De�ation vetors is required for this method to prove useful. Twomethods, one based on eigenvetor (of M−1A) based subspae for Z and the other basedon an arbitrary hoie of the de�ation subspae, are worth mentioning.However to alulate the eigenvetors itself ould be omputationally intensive so anarbitrary hoie whih losely resembles part of the eigenspae is the way out. In short theideal de�ation method should satisfy the following riteria:

5 PARALLEL PRECONDITIONING 12
• The de�ation-subspae matrix Z must be sparse;
• The de�ation vetors approximate the eigenspae orresponding to the unfavorableeigenvalues;
• The ost of onstruting de�ation vetors is relatively low;
• The method has favorable parallel properties.5 Parallel PreonditioningIn order to introdue parallelism in the ompletely sequential Inomplete Cholesky Preon-ditioner we use the Blok-IC version. In this ase we make bloks that grow in multiplesof the grid dimension n for a grid with n × n points. This is very important for our im-plementation sine we would like to expose (and utilize) parallelism in every step of theAlgorithm.5.1 Blok-Inomplete Cholesky PreonditioningShown in Figure 3 is an 8 × 8 grid and the resulting matrix whih has 64 rows. In ourimplementation the bloks have to be at least twie as big as grid dimension n or else amajor part of the outer diagonals with o�sets ±n is disarded and that leads to delayedonvergene (and sometimes stagnation) of the iterative method.5.2 Inomplete Poisson PreonditioningAlthough Blok Inomplete Cholesky Preonditioning is very e�etive in ahieving on-vergene for the Conjugate Gradient Method. It is highly sequential within the blok.Sine in this study we implement Preonditioned Conjugate Gradient on a Data ParallelArhiteture we also onsider a reently suggested method of preonditioning alled theInomplete Poisson Preonditioning [Ament, Knittel, Weiskopf, and Straβer, 2010℄.There is a prie to pay for this 'parallelism' in terms of onvergene speed. However,our experiments show that it is still at least as fast or omparable to the Blok InompleteCholesky version (for a partiular grid size) when the number of bloks is the maximumpossible.5.3 Domain Deomposition for De�ationIn Sub-domain de�ation, the de�ation vetors are hosen in an algebrai way. The ompu-tational domain is divided into several sub-domains, where eah sub-domain orresponds toone or more de�ation vetors. In our experiments we use Stripe-Wise domains as depitedin Figure 4.

6 IMPLEMENTATION ON THE GPU 13

�������������	
���	�������������

�����������������������������

���������

�������������	
��������������������

�������������������������������

���������������������

 ����!�������
!��������������"������#���$������%&�'�(

!��������������"������#�)�

Figure 3: Matrix for an 8 × 8 Grid. 64 Un-knowns. N=64, n=8 and BlokSize=2n

�� �� �� �� �� �� �	 �

� �� �� �� �	 �
 �� ��

�
�
	

�
�
�
�

		 	
 	� 	� 	� 	� 	�
�

�� �� �� �� �� 	� 	� 	�

�� �� �� �� �� �� �	 �

� �� �� �� �	 �
 �� ��

� � 	
 � � � �Figure 4: Stripe-Wise De�ation Domains. 4domains in an 8 × 8 grid.6 Implementation on the GPUWe have implemented our Iterative method on an NVIDIA GPU. We now give a primer ofthe various onstruts provided by the language extensions on the GPU that are needed towrite appliations for the GPU. GPUs are based on the idea of Single Instrution MultipleData (SIMD). This means that they an take a sequene of instrutions and run them ona data set, dividing it amongst multiple proessors and omputing the result in parallel.Eah unit of exeution is alled a thread. The sequene of instrutions exeuted by everythread on a proessor (there are many of these proessors on the GPU) is alled a kernel.In order to utilize the GPU one has to identify these basi units of omputation (i.e.kernels) inside the appliation and then launh the kernels on the 100s of proessors si-multaneously in parallel. The exeution on�guration before the kernel launh takes areof informing the GPU how many threads to launh and how to organize them in a logialblok and further those bloks are organized in a logial grid.GPU has a huge memory bandwidth and one of the keys to extrating performaneout of the GPU is to utilize the above 100 Gb/s memory bandwidth available on theGPU. GPU also has di�erent levels of memory like the CPU. However unlike the CPUthe appliation developer has to manage these memories expliitly. Among these the mostimportant is the Shared Memory whih is as good as a small ahe in whih one an keepthe heavily aessed data to minimize tra� to and fro between the hip and the globalmemory. Memory transfer between the CPU and the GPU should be kept to a minimumto maximize bene�ts from exeuting appliation ode on the GPU.

6 IMPLEMENTATION ON THE GPU 146.1 Desription of Kernel DesignOur omplete iteration runs on the GPU with minimal transfers between the CPU andthe GPU. This is one of the most important reasons for the performane boost we getfrom our implementation. Starting with the plain Conjugate Gradient Method and addingstep-by-step the modules for preonditioning and De�ation we developed the ode side byside on the GPU and the CPU. For this the following points were kept in mind.1. Identifying Kernels of Computation.2. Organizing ode in form of kernels.3. Prioritized Optimization of Kernels after analyzing the pro�ler results (% Time taken,Bandwidth utilised, Oupany).On the CPU we have used the Meshah BLAS Library for Dot Produts and Saxpys. Thekernels that were hand-oded are1. Sparse Matrix Vetor Multiply Kernel2. Preonditioning Kernel(s)3. De�ation KernelsAfter testing with two levels of preonditioning on the CG method it was notied thatwith inreasing size of preonditioning bloks and inreasing number of de�ation vetorsthe number of iterations fall. On the GPU the CUBLAS library provided some usefulfuntions for saxpy and dot produts whih we have used. For other operations ustomkernels were written.6.2 Sparse Matrix Vetor Produt (SpMV) - KernelOur matrix has a regular pattern that of a 5 point Laplaean Matrix in two dimensions.So there are 5 diagonals whih ontain the omplete matrix. The storage format that wehoose is alled the Diagonal Storage format. All the diagonals are stored in a 1-D array,starting from the lowest sub-diagonal(with o�set −n) followed by sub-diagonal with o�set(-1), then the main diagonal and then the two super-diagonals. Also an important featureis that they all have the same length. This kind of uniformity of size makes oalesedaess possible. So for example if say the sub-diagonal with o�set −1 has one element less,then at that position a zero �lls in to make it equal in size to the main diagonal.One stored in this way for eah row of the matrix we have 5 fethes from the arrayholding the 5 diagonals and 5 from the vetor. On the GPU we assign one thread toompute one element of the resulting Matrix-Vetor Produt. Additional optimizationsinlude using shared memory and texture memory. The offsets array is aessed by everythread and hene we store it on the shared memory to optimize the SpMV Kernel.

6 IMPLEMENTATION ON THE GPU 156.3 Preonditioning KernelThe preonditioning kernel is the most sequential part of the entire algorithm. We ini-tially begin with the Blok Inomplete Cholesky Preonditioning. The Blok Variant ofInomplete Cholesky Preonditioning basially exposes the parallelism at the blok level.However eah blok has onsiderable amount of serial work to be done. One tehnique thatwe have employed is to break down the steps of preonditioning into three.1. Forward Substitution2. Diagonal Saling.3. Bak SubstitutionThe diagonal saling step an be heavily optimized using shared memory. This is possiblesine it is inherently parallel with two reads every thread and one multipliation all thealulations(N) are independent. For the �rst and the �nal step we an also use sharedmemory. The trik is to load the elements using a number of threads (number same as theblok size) in parallel and then work on them and store them bak in global memory. Laterin the development proess we used Inomplete Poisson(IP) Preonditioning to maximizebene�ts of parallelism. It has been disussed earlier in Setion 5.2.6.4 De�ation KernelsFor de�ation we sub-divide the tasks into a ouple of kernels at the outset. Namely,1. Calulate b = ZTx2. Calulate Matrix-Vetor Produt of E−1 with b.3. Calulate Matrix-Vetor Produt of AZ with the result of the previous step andsubtrat from x.For the �rst kernel b = ZTx we have used the parallel sum approah as suggestedin [SenGupta, Harris, Zhang, and Owens, 2007℄. We only use the �rst part of the twopart approah disussed in the paper. Details an be found out in the GPU Gems artile[Harris, Sengupta, and Owens, 2007℄ for further optimizations to avoid divergene andwarp-serialization.For the other two kernels it is useful to tailor the matrix multipliationexample and use shared memory instead. This is better than the ublasSegmv (for somegrid sizes) sine we do not have an additional vetor saling and addition as required byublasSgemv.The deision to alulate E−1 expliitly is instrumental sine it greatly redues thetime for the iterations. Though the setup time for the algorithm is a�eted but the overallgain in the running time of the method more than ompensate the ostly operation. Ifthe number of de�ation vetors beome very high then, sine E−1 is sparse, this approahmight not be very e�ient.

7 RESULTS AND DISCUSSION 16For the alulation of AZ times E−1×b we used the cublasSgemv all. The �nal alu-lation xit = Qb+P T x an also utilize the kernels disussed here and also the ublasSgemv.In the later stages of development we optimize the storage of AZ and re-write the kernelsfor alulations involving AZ.7 Results and DisussionInitially we perform our experiments using 5 point Laplaean matrix resulting from a 2Dsquare grid. We talk about those experiments in the �rst subsetion that follows and afterthat we report the results from a matrix that results from a Grid having two phases and aninterfae layer. For the two di�erent matries in question we performed several experimentson three grid sizes for three di�erent preonditioning blok sizes and three di�erent hoiesof De�ation Vetors. All the experiments were done in single preision on the GPU aswell as on the CPU. We use a Q9650 Intel Quad Core CPU however we only utilize asingle ore. We optimize it to use SSE instrutions, unrolling loops and vetorizing usingompiler swithes. We also use the Meshah Blas Library for the Blas routines on theCPU. The GPU we use is a Tesla C1060 from NVIDIA. We use CUDA for writing our odeon the GPU. We use the CUBLAS and MAGMA libraries when using Blas funtions inthe GPU version.7.1 Numerial ExperimentsWe summarize our important �ndings in a speedup graph. It shows the speedups that wehave got with di�erent versions of the ode. These results are for a grid size of 512 × 512.In the versions where we use Blok Inomplete Cholesky preonditioning we use a bloksize of 1024. In the De�ated Preonditioned versions we use 4096 de�ation vetors. Thestopping riteria is ‖b−Axk‖2

‖b‖2
≤ 10−5. Note that in this version we have the maximum degreeof parallelism for our experiments. We have the largest grid size so more rows in parallelfor Sparse Matrix Vetor Multipliation. We have the largest number of PreonditioningBloks and we take the highest number of de�ation vetors (8 × n). We now elaborate onthe versions used:1. (CGVV) Conjugate Gradient - Vanilla Version - The only kernel in this version of thesolution is the Sparse matrix vetor kernel. It takes the majority of the time in theexeution time pro�le. However the kernel utilizes around 85 Gb/s of the Memorybandwidth on the GPU.2. (CGBIC) Conjugate Gradient - Blok Inomplete Cholesky Preonditioning - Whenwe add preonditioning to the Conjugate Gradient version in the previous step theonvergene is faster, however the speedup su�ers due to the inherent serial nature ofthe Blok Inomplete Cholesky Preonditioning within a blok. We tried using sharedmemory for o-operative loading and writing of elements however that approah

7 RESULTS AND DISCUSSION 17

�

�

��

��

��

��

��

�
�
�
�
�
��
�
��
�
	

�
�

Figure 5: SpeedUp Graph aross di�erent Code Versions. Grid Size (512 × 512)Exeution Times No. of IterationsCode Version CPU GPU CPU GPUCGVV 5.92 0.5004 652 649CGBIC 5.0723 5.594 327 327DPCG 110.45 4.45 42 42DPCG1 1.5944 1.0102 41 41DIPCG1 1.7285 0.2494 49 49DPCG2 1.5938 0.8866 41 41DIPCG2 1.7528 0.0975 49 49Table 1: Comparison GPU vs. CPU. Number of iterations required for onvergene andexeution times.su�ers at larger blok sizes (for e.g. 4096 elements mean 16384 bytes of sharedmemory).3. (DPCG) Conjugate Gradient - De�ation and Blok Inomplete Cholesky Preon-ditioning - Adding de�ation to the Preonditioned Conjugate Gradient introduesonsiderable sope for parallelism. Also in order to leverage the omputing poweravailable of the GPU we use the expliit inverse of the matrix E and do dense ma-trix vetor multipliation whih an be done in parallel on the GPU. One importantpoint that we found in our results is that the alulation involving the matrix AZwas taking most of the time so our fous beame to optimize AZ storage and alu-lation. Table 1 shows that de�ation deimates the number of iterations required foronvergene.4. (DPCG1) Conjugate Gradient - De�ation(Optimized - Level 1) and Blok Inomplete

7 RESULTS AND DISCUSSION 18Cholesky Preonditioning - AZ is inherently a sparse matrix. Sine A is sparse and
Z has piee-wise onstant de�ation vetors. So we store AZ in a data struture 5∗Nwide sine it is also symmetri just like A and has 5 diagonals. However some ofthe diagonals are d

n
wide where, d is the number of de�ation vetors and n is thedimension of the square grid (N = n× n). In this version we also optimize the CPUversion by use of some ompiler �ags to use SSE instrutions, unrolling of loops et.Result being that the CPU version gets very fast (up to 20 times) whereas the GPUversion beomes 2 times as fast. The result is that speedup is deimated with respetto DPCG. The pro�ler in this version points to the Preonditioning as the most timeonsuming task.5. (DIPCG1) Conjugate Gradient - De�ation(Optimized - Level 1) and Inomplete Pois-son Preonditioning - We use a novel preonditioning method reently published. Theparallel properties of this method are very well suited to the GPU. In e�et it is asparallel as the Jaobi preonditioner, albeit muh better mathematially and is asparallel as sparse matrix vetor multipliation we used for doing the operation Ax.Its onvergene rate is as good as the onvergene of blok-IC Preonditioner whenthe number of the bloks is maximum (n

2
, whereN = n × n) as shown in Table 1.This version gives us a speedup that is almost 4 times that of the Blok-IC versionin the previous step. The pro�ler results show that now most of the time is take upby the omputation step E−1b where E−1 is a dense d × d matrix and b is a d × 1vetor.6. (DPCG2) Conjugate Gradient - De�ation(Optimized - Level 2) and Blok InompleteCholesky Preonditioning - We optimize the Matrix vetor produt E−1b by using the

MAGMA Blas library developed for CUDA. In some ases MAGMA Blas delivers
3 times as muh memory throughput for matrix vetor multipliation ompared to
CUBLAS. Result being that we get almost double the speedup as we had for DPCG1version of the ode.7. (DIPCG2) Conjugate Gradient - De�ation(Optimized - Level 2) and Inomplete Pois-son Preonditioning - In this version we replae the Blok-IC Preonditioning used inthe previous step with Inomplete Poisson Preonditioning and we get muh betterspeedup for this partiular grid size (speedup grows aross all grid sizes, de�ationvetors and preonditioning bloks).For all these versions we get the Relative error norm of the solution, ‖Xexact−Xk‖2

‖Xexact‖2
at on-vergene (the k-th iteration) in the range of 10−3.We repeat experiments 1, 2, 6 and 7 for the Two-Phase Matrix as well. We haveto set the stopping riterion at 10−2. The Relative Error Norm of the Solution is alsoheavily a�eted and it stays at 10−1. This is beause of the very high ondition numberof the matrix A sine the density ontrast between the two mediums is 1000 : 1. Alsothe de�ation matrix P has an even worse ondition number, so we see that as the numberof de�ation vetors inrease the method misses onvergene. The speedups remain the

7 RESULTS AND DISCUSSION 19same sine all that we hange is the matrix A and that does not hange the number ofomputations involved. Please note that in ase of missed onvergene our method runstill 1000 iterations and the speedup is de�ned asSpeedUp =
Time taken on the Host(CPU) to do 1000 iterationsTime taken on the Devie(GPU) to do 1000 iterations (22)Another interesting feature that we notied in the results for Two-Phase Matries wasthat of False onvergene. This was notieable in versions 1 and 2. This means that therelative norm of the residual reahes below the required tolerane

‖ rk ‖

‖ r0 ‖
< ǫ, ǫ = 10−2 (23)but it rises and falls above and below this level (if we ontinue the iterations after thatand reord the residual). At one point the norm falls below mahine preision and thatdoes not make any sense. This behavior was onsistent in Conjugate Gradient Method andConjugate Gradient with Preonditioning for a two phase matrix.7.2 DisussionIn this setion we look at the di�erent aspets of our implementation. We try to �ndout how muh parallelism we exploit and how muh bandwidth we are able to utilize onthe GPU. We end this setion with a disussion on what might be possibly limiting theahievable speedup and how far we are from that point. Throughout this setion we analyzethe results with a grid size of 512×512 and 4096 de�ation vetors and Inomplete PoissonPreonditioning.7.2.1 Stati AnalysisIn this setion we alulate how many Floating Point Operations (FLOPs) eah kernel doesin eah run and how many memory aesses happen both during loads and stores. We listthis both for all the Kernels. The following notations are used.

• N, Number of Unknowns
• d, Number of De�ation Vetors
• m, Number of IterationsFrom Table 2 one an �nd the number of FLOPs being performed in one omplete runof the methods we have implemented.We now elaborate some of the Kernel names:
ZT x, E−1b and AZ×E−1b form the steps of the de�ation operation. Forward Substitu-tion, Diagonal Saling and Bak Substitution form the steps of Blok Inomplete CholeskyPreonditioning. Sdot is the Dot produt funtion as named in BLAS libraries. We use

7 RESULTS AND DISCUSSION 20
cublasSdot. Saxpy is the Saxpy Kernel as available in BLAS libraries. We use cublasSaxpyand also write ustom kernels to lub saxpy with saling operations to minimize memorytransfers. Ssal is the BLAS saling operation and Snrm is the 2-Norm operation availablein the BLAS libraries.Let us take the ase of the method DIPCG2 disussed in Setion 7.1. It is the De�atedPreonditioned (Inomplete Poisson) Conjugate Gradient method that uses optimized AZstorage and the gemv routine from MAGMA Blas library. It also has some optimizationsthat ombine ertain operations like saling and saxpy for alulation of β as given in thestep 9 of Algorithm 2.The kernels involved in this variant then are listed in Table 3.Summing up the FLOPs for m iterations we have
9N(m+1)+N(m+2)+d2(m+3)+9N(m+1)+9N(m+1)+8Nm+6Nm+Nm+2Nm. (24)or

45Nm + d2m + 29N + 3d2 (25)So the omputational intensity is governed by the �rst two fators of the expressionin (25). Now let us take a spei� ase of N = 262144, d = 4096 and m = 49. Theseorrespond to the experiment DIPCG2 disussed in 7.1 with grid size as 512×512 and theNumber of De�ation Vetors = 4096. It takes the 49 iterations to onverge both on thehost and the devie. The time on the devie is 0.0987 seonds and on the host is 2.237seonds. The speedup is 22.7 times.Now the GPU theoretially(peak throughput) an deliver 933 GFlops/s. The CPUon the other hand, when talking about one ore (whih we use in our experiments), andeliver a peak throughput of 12 GFlops/s. The numbers for NVIDIA are available fromthe website whih talks about the Tesla C1060 spei�ations [NVIDIA, 2010℄ . For IntelProessors also the numbers are provided on the website [Intel, 2010℄.The omputational load as alulated in (25) omes out to be 1.46 GFlops. Dividingthis by the time taken we get 0.65GFlops/s for the CPU and 14.79 GFlops/s for the GPU.These numbers an be further divided by the peak throughput to understand the Plat-form Utilization on the GPU as 1.585% and on the CPU as 5.41%.7.2.2 Kernels- PerformaneWe refer to some of the works that outline how to e�etively haraterize a kernels' per-formane and its ability to sale aross new generations of hardware that will have moreproessors to failitate parallel exeution. [Nikolls, Buk, Garland, and Skadron, 2008℄and [Ryoo, Rodrigues, Baghsorkhi, Stone, Kirk, and Hwu, 2008℄ and [Komatitsh, Mihéa,and Erlebaher, 2009℄ bring about ertain methods by whih we an �nd1. How to �nd if a kernel is ompute bound or bandwidth bound?2. Expeted Speedup from an appliation.

7 RESULTS AND DISCUSSION 21
Kernel Data Computations Writes Degree of Number of CallsRead In Done Performed Parallelism in useSparse-Matrix 6N 9N N N m + 1Vetor ProdutandIP Preonditioning
ZT x N N d d m + 2

E−1b d(d + 1) d × d d d m + 3(gemv)
AZ × E−1b 5N + d 9N N N m + 1Forward 4N 3N N

√
N
2 m + 1and BakSubstitutionDiagonal 2N N N N m + 1Saling

(AZ)T x 6N 5N d d 1Sdot N 2N N − 4mSaxpy 2N 2N N − 3mSsal N N N − mSnrm N 2N N − mTable 2: Kernels - Computation and Parallelism

SpMV ZT x E−1b(gemv) AZ × E−1b SdotSaxpy IP Preonditioning Snrm (AZ)T xTable 3: Kernels in the DIPCG2 version of the ode in Setion 7.1

7 RESULTS AND DISCUSSION 22Kernel CharateristisMethod Cahing Divergene Shared-Memory Warp(Shared Memory) Bank Con�its Serialization
Magma_Sgemv Yes No No No

IPPreconditioning Minimal Yes Yes No
SpMV Minimal Yes Yes No

AZE−1b Minimal Yes Yes No
ZT x Yes Yes Yes Yes

saxpy_alpha Yes No No No
saxpy_beta No No No NoTable 4: Grid of 512×512 points. Number of De�ation Vetors = 4096. With optimizationsapplied to AZ storage and alulation, E−1b with Magma_Sgemv and other optimizations.3. Examination of PTX(CUDA assembly) ode for �nding perentage of ode that ismemory or ompute intensive.Also these douments detail important things to keep in mind when designing a kernel oroptimizing it. These douments put to use, in their respetive ontexts, the Best Pratiesguide provided by NVIDIA [NVIDIA, 2009℄.The most important fator in a kernels' e�etiveness is its ability to do memory aessesin the best possible way. To this end a ouple of important tehniques are instrumental.This step omes obviously after the point of minimizing memory transfers as muh aspossible between the CPU and GPU.1. oalesed memory aess2. ahing3. minimize divergene among threads within the same blokIn Table 4 we list whih tehniques are used by the (exept CUBLAS) kernels in ourimplementations. Memory oalesing has been used in all the kernels. We also list if thereare shared memory on�its.7.2.3 Bandwidth UtilizationLet us take a look at the bandwidth utilization of the kernels in the most optimizedversion DIPCG2 (Setion 7.1) of the ode that we have. This is the De�ated InompletePoisson Preonditioned Conjugate Gradient Method with optimizations for AZ storageand alulation and also with the gemv operation from the MAGMA library.In this version we onsider the Grid Size 512×512 with 4096 de�ation vetors. In Table5 we list the Memory Throughput of Individual Kernels and the perentage of time theytake of the total exeution on the devie. It also lists the oupany of the kernels.

7 RESULTS AND DISCUSSION 23Kernel StatistisMethod %GPUTime Read Write Overall OupanyThroughput Throughput Throughput
MagmaSgemv 44 85.2 0.02 85.4 50%

IPPreconditioning 9.6 66.39 5.75 72.15 100%
SpMV 9.6 66.44 5.76 72.2 100%

AZE−1b 9.4 51.93 6.08 58.02 100%
ZT x 6.6 8.175 1.02 9.19 50%

saxpy_alpha 3.2 34.85 34.85 69.7 100%
saxpy_beta 2.5 42.64 21.3 63.67 100%
cublas_Sdot 8.6 53.88 0.197 54.08 100%

cublas_Saxpy 2.9 42.34 21.17 63.52 100%
cublas_2 − Norm 1.81 37.69 0.223 37.92 100%Table 5: Grid of 512×512 points. Number of De�ation Vetors =4096. CG with De�ationand Inomplete Poisson Preonditioning. With optimizations applied to AZ storage andalulation, E−1b with MagmaSgemv and other optimizations.The CUBLAS Kernels are pre�xed with Cublas and other kernels have been hand-oded with exeption of the Magma_Sgemv whih is from the MAGMA blas library. InTable 5 we show kernels that form more than 98% of the total exeution time. The last

2% or so is taken up by transfers from Devie to Host and a few alls to kernels used fororreting x at the end of the iteration by doing x = Qb+P T x as the last step of Algorithm2. The Tesla system on whih we have run all of our tests o�ers a memory bandwidthof 101Gb/s. As an be seen the Gemv is utilizing a majority of the available bandwidth(85Gb/s). Followed losely by the IP Preonditioning and SpMV Kernels at 72 Gb/s.These three kernels form 60% of the total exeution time. Exept for the CUBLAS allfor alulating the 2-Norm of the updated residual (stopping riterion - required to beheked every iteration) and the all to alulate ZT x all the kernels utilise more than halfof the available bandwidth. The average Memory throughput of this exeution is 68 Gb/s.7.2.4 Disussion on Possible Speedup LimitsGiven that two of the kernels seem to be operating at 50% oupany we try to �nd out ifthey an deliver more performane and hene, a possibility of a higher speedup.The urrent kernel for ZT x is trying to utilize both shared memory and parallel redu-tion in order to ahieve its urrent bandwidth utilization. We have kept as many threadsin the blok as are the elements whose sum is required to make one element of the newvetor y resulting from y = ZT x. Sine in this kernel N/d elements have to be summed in

8 CONCLUSIONS 24hunks to produe d elements where
N = Number of Unknowns, d = Number of De�ation Vetors. (26)
y = d × 1 vetor, x = n × 1 vetor. (27)The oupany varies aording to the ratio of N/d but the bandwidth never rosses thatindiated in Table 5. The kernel's oupany varies with the fator N/d. For N/d aboveand equal to 128 (we have values like 16, 32, 64, 128, 256 and so on.) the oupany is

100%. For the ase under onsideration the oupany is 50% but for a lower numberof de�ation vetors (for e.g. 2048) it is 100% (sine N/d beomes 128). Even then thebandwidth does not hange. This means that the kernel annot perform better than this.Trying to omment out the summing operations shows that the ZT x kernel an deliver amaximum of 28Gb/s and only takes 2% of the total exeution time. The speedup variesby only 5%.This kernel has a large amount of Shared Memory Bank on�its. They an be overomeby hanging the storage struture of the vetor x however this is not useful sine this wouldrequire hanging many other kernels (whih are already performing at 100% oupany andare bandwidth limited) and also beause this kernel is not the most time onsuming kernelin the whole operation.Other than this kernel (y = ZT x) the other plae where there is a possibility of im-provement is the Magma_Sgemv kernel. Although it is utilizing most of the memorybandwidth it is still having an oupany of 50%. A loser look at the oupany for thiskernel shows that it has an exeution on�guration ofGrid Size 64 × 1 × 1 (28)Blok Size 64 × 1 × 1. (29)We used the ode for double preision gemv posted on the the MAGMA forums whihwe hange to single preision and verify that it is exatly similar.By modifying the number of bloks in the ode form 64 to 128 we get an oupanyof 100%. However the bandwidth stays around 85Gb/s. This shows that the kernel isbandwidth-bound. Sine at maximum oupany we see no hange in the bandwidth.All the other kernels are at 100% oupany and are bandwidth bound sine they havesimple arithmeti operations and do not show hanges in bandwidth with further inreasingdata sizes.More elaborate analysis of Kernels and the ost of Inter-Warp Parallelism based onMemory Aesses and Computational overlap is possible. In [Hong and Kim, 2009℄ adetailed model for suh analysis is disussed. However they do not address the issues withShared Memory Bank Con�its.8 ConlusionsIn this paper we investigate e�ient implementations of the preonditioned ConjugateGradient method on a GPU for very large, sparse systems of linear equations. We on-

REFERENCES 25sider linear systems whih originate from a �nite di�erene disretization of Poisson-likeproblems on a strutured grid. As a typial example we onsider the pressure equationwhih is used in simulations of multi-phase �ows. Due to disontinuities in the density, theresulting matrix is ill-onditioned whih leads to slow onvergene.To have an e�ient implemention of the preonditioned Conjugate Gradient method wedistinguish the following building bloks: vetor update, inner produt, sparse matrix ve-tor produt and the appliation of a preonditioner. For the �rst three operations e�ientimplementations on the GPU are available. The main bottlenek is a fast GPU imple-mentation of the preonditioner. For this operator (exept a diagonal preonditioner) theresults are sare in the literature. Our aim is to use a preonditioner, whih is ompet-itive in onvergene with the best known serial preonditioners based on the inompleteCholesky deomposition. In the implementation of the various preonditioners the follow-ing guidelines are used: exploit synhronization-free parallelism, optimize thread mapping,align global memory aess, and reuse data as muh as possible.We start with a blok-IC preonditioner, where the bloks are solved in parallel. To obtaingood onvergene for many bloks and for large ratios of the densities we add a seond levelpreonditioner (de�ation). It appears that the onvergene is reasonable but the speedup issmall due to the low level of parallelism. After that we use a reently developed InompletePoisson preonditioner, whih has the same good parallelization properties as the matrixvetor produt. Combination of this preonditioner with de�ation, whih is also fast onthe GPU, leads to a very e�ient method.We illustrate our work with some numerial experiments. From these experiments it ap-pears that for large problems the GPU implementation of the Inomplete Poisson preon-ditioner ombined with de�ation is 20 times faster than ICCG on one node of a CPU.Finally, we observe that single preision arithmeti for multi-phase �ow with large jumpsin the density does not lead to reliable results. This is a point of future researh.ReferenesM. Ament, G. Knittel, D. Weiskopf, and W. Straβer. A parallel preonditioned onjugategradient solver for the poisson problem on a multi-GPU platform. http://www.vis.uni-stuttgart.de/ amentmo/dos/ament-pgip-PDP-2010.pdf, 2010.A. Asgasri and J. E. Tate. Implementing the Chebyshev Polynomial Preonditionerfor the iterative solution of linear systems on massively parallel graphis proessors.http://www.ele.utoronto.a/ zeb/publiations/, 2009.M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszzek,and S. Tomov. Aelerating sienti� omputations with mixed preision algorithms.CoRR, abs/0808.2794, 2008. URL http://dblp.uni-trier.de/db/journals/orr/orr0808.html. informal publiation.

REFERENCES 26N. Bell and M. Garland. E�ient sparse matrix-vetor multipliation on CUDA. TehnialReport NVR-2008-04, NVIDIA Corporation, Deember 2008.L. Buatois, G. Caumon, and B. Levy. Conurrent number runher: a GPU implementationof a general sparse linear solver. Int. J. Parallel Emerg. Distrib. Syst., 24(3):205�223,2009.S. Georgesu and H. Okuda. Gpgpu-enhaned onjugate gradient solver for �nite elementmatries. Proeedings of The Seond international Workshop on Automati PerformaneTuning, 2007.R. Gupta. Implementation of the De�ated Preonditioned Conju-gate Gradient Method for Bubbly Flow on the Graphial ProessingUnit(GPU) . Master's thesis, Delft University of Tehnology, Delft, 2010.http://ta.twi.tudelft.nl/nw/users/vuik/numanal/gupta_afst.pdf.M. Harris, S. Sengupta, and J. D. Owens. Parallel Pre�x Sum (San) with CUDA, 2007.http://developer.nvidia.om/GPUGems3/gpugems3_h39.html.M. Harris, S. Sengupta, J. D. Owens, S. Tseng, Y. Zhang, and A. Davidson. Cudpp.http://gpgpu.org/developer/udpp, 2009.S. Hong and H. Kim. An analytial model for a GPU arhiteture with memory-level andthread-level parallelism awareness. SIGARCH Comput. Arhit. News, 37(3):152�163,2009. ISSN 0163-5964. doi: http://doi.am.org/10.1145/1555815.1555775.Intel. Proessor spei�ations - by family. Website, 2010. http://www.intel.om/support/proessors/sb/s-023143.htm.D. Komatitsh, D. Mihéa, and G. Erlebaher. Porting a high-order �nite-element earth-quake modeling appliation to NVIDIA graphis ards using CUDA. J. Parallel Distrib.Comput., 69(5):451�460, 2009. ISSN 0743-7315. doi: http://dx.doi.org/10.1016/j.jpd.2009.01.006.M. M. Baskaran and R. Bordawekar. Optimizing sparse matrix-vetor multipliation on GPUs. Tehnial report, IBM Researh Di-vision, NY, USA, Deember 2008. http://gpgpu.org/2009/04/13/optimizing-sparse-matrix-vetor-multipliation-on-gpus.J.A. Meijerink and H. A. Van der Vorst. An interative solution method for linear systemsof whih the oe�ient matrix is a symmetri M-matrix. Math. Comp., 31:148�162,1977.A. Monakov and A. Avetisyan. Implementing bloked sparse matrix-vetor multipliationon NVIDIA GPUs. In SAMOS '09: Proeedings of the 9th International Workshop onEmbedded Computer Systems: Arhitetures, Modeling, and Simulation, pages 289�297,Berlin, 2009. Springer-Verlag.

REFERENCES 27J. Nikolls, I. Buk, M. Garland, and K. Skadron. Salable parallel programming withCUDA. Queue, 6(2):40�53, 2008. ISSN 1542-7730.NVIDIA. NVIDIA CUDA C Programming Best Praties Guide CUDA Toolkit v2.3.NVIDIA Corporattion, Santa Clara, 2009.NVIDIA. Tesla proessor spei�ations. Website, 2010. http://www.nvidia.om/objet/produt_tesla_1060_us.html.S.P. Van der Pijl, A. Segal, C. Vuik, and P. Wesseling. A mass onserving level-set methodfor modelling of multi-phase �ows. International Journal for Numerial Methods inFluids, 47:339�361, 2005.S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W. W. Hwu.Optimization priniples and appliation performane evaluation of a multithreaded gpuusing CUDA. In PPoPP '08: Proeedings of the 13th ACM SIGPLAN Symposium onPriniples and pratie of parallel programming, pages 73�82, New York, NY, USA, 2008.ACM. ISBN 978-1-59593-795-7.Y. Saad. Iterative Methods for Sparse Linear Systems. Soiety for Industrial and AppliedMathematis; 2 edition, Philadelphia, 2003.S. SenGupta, M. Harris, Y. Zhang, and J.D. Owens. San primitives for GPU omputing.Graphis Hardware, 2007.J. M. Tang and C. Vuik. Aeleration of preonditioned krylov solvers for bubbly �ow prob-lems. Leture Notes in Computer Siene, Parallel Proessing and Applied Mathematis,4967(1):1323�1332, 2008.J.M. Tang and C. Vuik. E�ient de�ation methods applied to 3-D bubbly �ow problems.Eletroni Transations on Numerial Analysis, 26:330�349, 2007.C. Vuik, A. Segal, and J.A. Meijerink. An e�ient preonditioned CG method for thesolution of a lass of layered problems with extreme ontrasts in the oe�ients. J.Comp. Phys., 152:385�403, 1999.M. Wang, H. Klie, M. Parashar, and H. Sudan. Solving sparse linear systems on NVIDIATesla GPUs. In ICCS '09: Proeedings of the 9th International Conferene on Compu-tational Siene, pages 864�873, Berlin, 2009. Springer-Verlag.

