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Preface

The background
Creating a thesis is no sinecure. As is often lamented, it is a project which takes
much energy and a substantial amount of time. In fact, the time needed for pro-
ducing this dissertation has faulted my expectations in two ways. On the one
hand, the actual work took a rather short time: the starting point was about three
and a half years ago when the discipline of neural networks, as yet unknown to
me, made a vague but challenging impression on me. On the other hand, I must
say that the time required has been considerable: almost four and a half decades
of my life have passed in order to arrive at this point. As you might presume,
many reasons can be given for this. Now, contemplating them, I think two issues
have been all-important and, actually, conditions sine qua non for the realization
of this work. The first one relates to the question how I have come in the position
to collect enough knowledge, the second one relates to the case of how I got the op-
portunity to accumulate enough self-confidence in order to first start, and then to
finish the project. Very many people have helped me in this process and I would
like to thank some of them explicitly here.

Growing up along the borders of the river ‘Wantij’, I discovered many secrets
of nature. My parents offered me much freedom in going my own way, in explor-
ing and in finding out, using the things I came across. I was surrounded by many
friends of my age. Besides having the usual games, we constructed large piers in
the river used for swimming, fishing and mooring. By doing this, we learned as
a matter of course the basic principles of mechanical engineering. At high school,
certain teachers were able to strike the right note in order to rouse my love for
mathematics and physics. I still remember the explanations on algebra and geom-
etry by my mathematics teacher when I was 13 years old. Likewise, I still recollect
the presentation by my teacher of physics on the differential equation of a simple
harmonic motion

m
d2u

dt2
+ cu = 0;

having a sinuous function as solution. Ever since, I have loved differential equa-
tions and, curiously enough, in a way the said equation plays a part in this thesis!

During my student times at the Technical University Delft, I was often more
engaged on student politics and the social impact of science than mathematics and
physics itself (it was in the seventies : : : ). Nevertheless, I was taught many basic
principles of theoretical physics and mathematics. I also learned how computers
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could be used, as it was done in those days. For my master’s thesis, I worked in
the field of numerical analysis, and again differential equations played a big part.
My working career started in 1977, almost 19 years ago. Since that point of time,
I stayed at various places (see my curriculum vitae) and I learned many differ-
ent subjects. But, whatever my activities were, science continued to attract me.
And fortunately, there have been many opportunities to augment my scientific
knowledge. E.g., caused by the enormous automation in society, computer sci-
ence started to cross my path more and more.

Looking back now, I might say I have been quite lucky to be able to constantly
improve my knowledge and skills during my life. In relation to my scientific back-
ground, this process has taken place in three fields especially, namely, mathemat-
ics, physics and computer science, all of which have been indispensable for re-
alizing this thesis. Moreover, I have been able to increase my self-reliance at the
same time, although in a different way. I still remember very well the moment of
finishing my master’s thesis, when I did not feel strong enough to continue in re-
search: scientific work seemed to be a privilege for other, smarter people. Besides,
another even more difficult task announced itself: our first child was coming and
would soon attract much attention and energy. But ever since, by these and other
experiences – like during the Mozambican adventure – my self-confidence could
grow, slowly but eventually to a sufficient measure. The intensive contact with so
many colleagues, students, and, above all, friends have been a crucial factor here.

Acknowledgements
Of all people, I would like to thank you, Anneke, first. About 28 years ago, we be-
came close friends and we still are. Of everyone, I am most indebted to you. We
have lived to see incredibly many things together, with the creation of our family
of 3 sons as undoubtedly the most wonderful experience and the most radical de-
cision. Yet, you also gave me a wide berth for finding out much on my own. More
specifically, referring to this thesis, you have seen all my moods on it, all progress,
doubts, attempts and struggles, in other words, the whole weal and woe of this
project. Thanks very much for everything! Next, I would like to thank my parents
and my parents-in-law for giving much confidence and support during so many
years, in spite of the numerous, in their eyes sometimes rather wild adventures I
attempted. It is really a wonderful notion to have you at the ceremony, soon.

It is impossible to thank by name every one of the friends I encountered dur-
ing my life. However, some can’t possibly be passed over. I thank my friends
from Delft, certainly Gerrit, Rob, and Romke, among other things, because of the
exciting walking and sailing tours we made, and Gerrit together with Tineke on
account of the many years of intense friendship. Particular thanks also go to Pe-
ter and Elly for the innumerable lovely hours experienced, first together and later
separately, quite especially with Elly in Amsterdam. There, I also met other people
within a large network of friends. Of all of those, I would like to thank Els for the
enjoyable moments we witnessed. I thank Nannie and Raymond from Eindhoven
for all the nice times together and our talks (including those using electronic mail).
Finally, Marc, thank you very much for the many moments of discussion (and of
silence!) during the years we occupied the same office-room, as well as for your
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Chapter 1

Introduction

This thesis refers to an analysis of various models of recurrent artificial neural net-
works and to how they might be applied in order to solve certain optimization
problems. It therefore seems most appropriate to start by highlighting the posi-
tion of the specialty neural networks among other areas of science, to present a
historical sketch of its development, to explain what is actually meant by an arti-
ficial neural network, and to describe how it can be applied. We shall then shortly
dwell upon the central theme of this study, by presenting a general mental image
of the notion of relaxation and by explaining how this may take place in a recurrent
neural network. Next, the general research objectives are formulated, including a
short sketch of how the project got started and gradually evolved. The subject of
the succeeding section is the methodology used. It also covers a justification of the
chosen working-method. This introductory chapter is concluded by an exposition
of the structure of the rest of the dissertation.

1.1 Artificial neural networks

1.1.1 Artificial neural networks and AI

Artificial neural networks (ANNs) are part of the much wider field called artificial
intelligence (AI). AI can be defined as ‘the study of mental faculties through the
use of computational models’ [23]. A related definition is that ‘AI is the study of
intelligent behavior’ including ‘the implementation of a computer program which
exhibits intelligent behavior’ [32]. In yet another characterization it is noted that
’the objectives of AI are to imitate by means of machines, normally electronic ones,
as much of human activity as possible, and perhaps eventually to improve upon
human abilities’ [67]. An unavoidable difficulty of these and similar definitions
is that they are always based on other notions whose precise meaning is hard to
state1. E.g., in the second description, it is difficult to define precisely the notion

1This concerns a well known problem in science: definitions are always based on other notions. At
a certain level, one should accept some ‘primary’ terms [53].
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of intelligent behavior. Notwithstanding this, it is clear from the given defini-
tions that usually, within AI, computers are applied to imitate the mental faculties
of our brain which, among other things, comprises of vision, olfaction, language
comprehension, thinking, reasoning, searching, remembering, learning, sensing,
and controlling. Besides, the fundamental question arises: which modelling ap-
proach is chosen by AI researchers? Roughly speaking, two main streams can be
distinguished in the ways AI is modelled2, namely symbolism and connectionism
[32]. The most fundamental difference between the two approaches concerns the
representation of knowledge. In case of symbolism, this is done by using ‘physical
symbols’. In this approach, knowledge is represented and manipulated in a struc-
tured way, e.g., by means of a computer language like Prolog or Lisp. Logic plays
a great part here, and classical expert systems are a well known example. On the
other hand, in the ’connectionistic’ approach, the representation of knowledge is
numerical, where the weight values between the interconnected neurons (see be-
low) represent knowledge in a distributed and generally unstructured way [54].
In this case, calculus and probability theory are important tools.

1.1.2 Inspiration from the biological brain

In quite a bit of AI research, the qualities of our brains are the source of inspira-
tion. More specifically, within the study of ANNs, the way our cerebra are com-
posed is directly taken into account: the biological neural network is imitated by
an artificial one where certain architectonic elements of the cerebra are taken over.
The following convenient brain characteristics are often put forward as reasons to
study its workings [44, 79]:

� It is fault-tolerant: damage (to individual so-called neurons) can occur
without a severe degradation of its overall performance.

� It is flexible: adjustment to a new environment is easily done through
learning.

� It is highly parallel: many neurons process the (locally available) in-
formation simultaneously.

� It is anarchic: there is no specific area which controls the overall work-
ing of the brain and the neurons process the incoming information au-
tonomously.

� It can deal with fuzzy, probabilistic, noisy, and even inconsistent infor-
mation.

� It is small, compact, and dissipates little power.

Comparing the real brain and all man-made devices, it should be clear that any
element of the latter group enjoys only a tiny subset of the brain properties men-
tioned above.

2In the background of the modelling problem, an intense philosophical discussion rages on what
human intelligence actually is and, related to this fundamental question, on whether a machine like
a computer can really have a mind (becoming apparent by, for example, the ability to ’feel’ pain and
pleasure). There exist various elaborated points of view on this intriguing subject some of which can
be found in [26, 45, 61, 67].
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The detailed working of the brain has been barely understood. Yet, during the
last decades, both in the symbolic and in the connectionistic camp, many compu-
tational models have been proposed, which proved to be able to imitate certain
elementary mental functions. The construction of those models is usually based
on knowledge from many areas of science. E.g., in the area of natural language
comprehension, specialists in linguistics, computer science and cognitive psychol-
ogy make important contributions. In robotics, mechanical and electronic engi-
neering play a big part. Constructing a theorem-proving device requires knowl-
edge of mathematics, and building an expert system demands, besides knowl-
edge of logic, the elicitation of quite a bit of ‘domain knowledge’ from experts in
the field. When composing devices which can see or hear, one uses knowledge
from physics, and when constructing an artificial olfactory organ, one requires
knowledge of chemistry too. An example might give some idea of the variety
of information that should be collected to construct a model with only one spe-
cific function. In the ‘signal channelling attention network’ for modeling so-called
‘covert attention’ (a certain, not overtly visible selective process of sampling the
visual environment by the eye used, e.g., to select future targets for eye fixation),
four different disciplines have been applied: biology (neurophysiology), psychol-
ogy (psychophysics), physics (statistical mechanics), and computer science (par-
allel computation) [73].

In the general ANN approach, the focus is firstly mathematical: we try to catch
the working of the brain in abstract mathematical models, which can be analyzed
by means of mathematical specialties like dynamic systems theory, probability
theory and statistics, or computational learning theory. Certain elements of the
anatomy and physiology of our brain as studied in neurobiology act as source of
inspiration in the modelling process, but they are, in general, merely points of de-
parture. Theoretical physics is relevant in offering several well studied models
which have proven to be useful, and computer science can be used to perform
simulation studies on the ANN models in question. Last but not least, electronic
engineering can be applied in order to construct, test, and apply (successful) ANN
models in hardware.

Moreover, there is a reverse side to the coin. Artificial models of the brain often
involve new paradigms and in their turn, may be adopted to solve (old and new)
practical problems in a (completely) new way. Thus, in this way, nature shows
us how to tackle difficult problems. This surprising, reversing effect may lead to
a nice spin-off of the study of artificial intelligence. In fact, part of the study as
described in this thesis exhibits an example of this recoiling effect: we have tried
to solve combinatorial optimization problems in an alternative way using ANNs.

1.1.3 A brief historical sketch

During the early forties, abstract models concerning the working of a neuron were
introduced [60]. A few years later, a law was proposed that explains how a net-
work of neurons can learn [39]. Approximately at the same time, the symbolic ap-
proach was applied by scientists who made proposals on the construction and im-
plementation of chess-playing computers (for a more detailed historical overview,
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we refer to [27]). Another example of the symbolic way to grapple with AI, was
the creation of a theorem-proving program [63]. Later, it was recognized that
the logic-oriented approach of this program – precisely like in the event of chess-
playing machines – should be broadened to a knowledge-based approach where,
besides a certain inference strategy, the acquisition and representation of domain
knowledge in a so-called knowledge base is considered to be crucial. The process-
ing of this knowledge is performed by a separated inference engine and is symbol-
ically oriented. In the mid-eighties, many expert systems having this architecture
were constructed with the objective of simulating human experts intelligence.

In the mean time, the connectionistic approach had gone through a severe cri-
sis. Often, the book of Minsky and Papert [62] (published in 1969) is taken as
the root of all the trouble around connectionism in the seventies. It describes cer-
tain strong theoretical limitations of simple perceptrons (a class of certain ANNs).
It also expresses the opinion that an ‘interesting learning theorem for a multi-
layer machine’ might never be found. Yet, some researchers persevered and in
the eighties, neural networks returned to the scene. The backpropagation algo-
rithm as popularized by Rumelhart et al. [75] has been an important stimulus just
like the contribution by Hopfield using the idea (from physics) of energy mini-
mization [46, 47]. A few years later, neural networks became a quite popular area
of research with hundreds of conferences every year and the genesis of dozens of
journals.

Due to the theoretical improvements, ANNs became a new tool in resolving
practical problems. A functional classification yields four application areas [32],
namely ‘classification’ (assignment of the input data to one of an (in)finite number
of categories), ‘association’ (retrieval of an object based on part of the object itself
or based on another object), ‘optimization’ (finding the best solution), and ‘self-
organization’ (structuring received data). Within any of these classes, many sub-
classes can be distinguished, each in its own stage of development. Classification
is probably the best-known and largest class with numerous application areas like
speech recognition [21], handwritten digit recognition [58], control [6], prediction
of time series, image compression, and others (for an overview, we refer to [44]). A
collection of applications in the field of optimization and association will be given
at the end of the next chapter.

Nowadays, the symbolic as well as the connectionistic camps have run up
against certain barriers of their approach and seem more prepared to merge and
also to integrate with other promising areas like genetic algorithms [36, 56] and
fuzzy systems [54]. In a recent textbook [32], this tendency of integration is ex-
tensively described and illuminated with examples. The three fields neural net-
works, genetic algorithms, and fuzzy systems together are sometimes termed com-
putational intelligence [29] (see further section 2.2.3).

1.1.4 An overview of ANNs

Nowadays, there are many textbooks3 on ANNs, all using a certain taxonomy.

3The most important one for this thesis has been the book by Hertz, Krogh, and Palmer [44]. A
classic is the book by Rumelhart et al. [75], another classic that of Hecht-Nielsen [41]. Still other general
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Defining neural networks

The basic building block of all networks is a neuron (also referred to as a unit,
node, processing element, or threshold logic unit). Various neurons are inter-
connected in differently organized topologies corresponding to different architec-
tures. A central goal of ANN research is to understand the global behavior of a
given ANN based upon the individual deportment of the neurons and its intercon-
nections. A precise definition of an ANN is hard to give. The general definition
by Hecht-Nielsen [40] (re-stated in [79]) gives several basic qualities:

“A neural network is a parallel, distributed information processing struc-
ture consisting of processing elements (which can possess a local memory
and carry out localized information processing operations) interconnected to-
gether with unidirectional signal channels called connections. Each process-
ing element has a single output connection which branches (‘fans out’) into
as many collateral connections as desired (each carrying the same signal – the
processing element output signal). The processing element output signal can
be of any mathematical type desired. All of the processing that goes within
each processing element must be completely local: i.e., it must depend only
upon the current values of the input signal arriving at the processing element
via impinging connections and upon values stored in the processing element’s
local memory”.

We would like to subjoin the following important aspect:

A central issue in the employment of a neural network is the way how infor-
mation is encoded in and retrieved from the neural system.

We now look more accurately at the working of an individual neuron. In the math-
ematical approach, a neuron is assumed to receive input signals, to add them to-
gether, and to generate an output signal using a given ‘transfer’ (or ‘activation’)
function, also termed input-output characteristic. More precisely, if Oi represents
the output of neuron i, Ii an environmental (or external) input, wij the ‘intercon-
nection strength’ from neuron j to i,Ui the total input, and g the transfer function,
then the new output value of the neuron is calculated via

Onew
i = g(Uold

i ) = g(
X
j

wijO
old
j + Ii): (1.1)

The vectorO = (O1; O2; : : : ; On) is often called the system state of a neural network
having n neurons. From (1.1) we see that the signals incoming from other neurons
are weighted4.

In the first model by McCulloch and Pitts [60], the transfer function is a binary
threshold unit. The equation (1.1) can then be rewritten as

Onew
i = �(

X
j

wijO
old
j + Ii � �i); (1.2)

books on ANNs are available, for example, [30, 32, 38, 54, 79, 82].
4In neurobiological terms, a weightwij represents the ‘strength of the synapse’ connecting neuron j

to neuron i [44].
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Figure 1.1: A scheme of an artificial neuron.

where�i is the local threshold value of neuron i and� is the unit step or Heaviside
function defined conform

�(x) =

�
1 if x � 0
0 otherwise: (1.3)

Other choices for the transfer function [44] include linear functions and non-linear
functions like the sigmoid function (section 2.1.5). Even stochastic transfer rules
are possible (section 2.3.3).

Having defined the transfer function, we must still choose a rule for the up-
dating sequence of the neurons [44]:

� Asynchronous updating: one unit at a time is selected and its output
value is adjusted according to equation (1.1).

� Synchronous updating: at each time step the output of all neurons is
adjusted according to equation (1.1).

� Continuous updating: the output values of all units are continuously
and simultaneously adjusted, while at the same time the inputs change
continuously.

The last updating strategy will be discussed in section 2.3.2.

A taxonomy

Two basic criteria are often used to categorize ANNs. The first one concerns the
way the signals propagate among the neurons [79, 44]. In a feedforward scheme, in-
formation is only allowed to flow in one direction without any back coupling. This
implies that the output of the network is uniquely determined given the weights
wij , the transfer function in the neurons, and the external inputs of the neural net.
These networks are often structured in ‘layers’. A one-layer feedforward network
is called a perceptron. Feedback networks on the other hand, allow information to
flow among neurons in either direction, implying that such a net needs not nec-
essarily be in equilibrium nor that an equilibrium state is uniquely determined.
It is even the case that these recurrent networks do not necessarily settle down to
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a stable state. However, we shall confine ourselves to study those networks that
find an equilibrium state via a so-called relaxation process.

The second fundamental criterium concerns the way the network learns. Su-
pervised learning is a process that incorporates an external teacher and/or global
information. A network is considered to learn if the weight matrix (wij) (some-
times called the networks ‘memory’) changes in time, mathematically expressed
as

9i; 9j : _wij � dwij
dt

6= 0: (1.4)

In unsupervised learning there is no teacher. The network must discover pat-
terns, regularities and so on by itself. There should be a form of built-in self-
organization.

Using the two criteria, four types of networks can be distinguished. We limit
ourselves to comment on two of them (more details can be found in the afore-
mentioned textbooks). The most popular network is probably the supervised,
feedforward type. The mostly applied learning rule is called backpropagation:
using a set of correct input-output pairs (called the training set), small changes
in the connections wij are made in order to minimize the difference between the
actual and the desired output value of every training example. In this way, the
learned stuff is fixed in the weight values wij in a distributed way. All training
examples have their contribution to all final weight values, but in the end, it is
unclear what every individual weight precisely stands for: that is why we say the
representation of knowledge in ANNs is ‘unstructured’. Afterwards, it is hoped
that the network can ‘generalize’ what it has learned: the network should also find
the correct output for an input not belonging to the training set. Function approx-
imation and pattern recognition are the common general applications5, while the
central points of theoretical study are learning, generalization and ‘representa-
tion’ [44, 84]: the representation problem concerns the question what type of func-
tion can be represented (and therefore might be learned) by a feedforward net-
work of given architecture. Besides the afore-mentioned popular type, there exist
many other supervised, feedforward models.

The second type we dwell on is the unsupervised, recurrent network type. Ne-
glecting the many other examples of this type, the binary, the continuous, and the
stochastic Hopfield models belong to this category. The models are called unsu-
pervised since the matrix (wij ) is fixed at the beginning (using global information
in one way or another) and is never changed6. The Hopfield models are the main
subject of our study. They will be introduced formally and discussed extensively
in the forthcoming chapters. Application areas of these networks are (memory)
association [44] and optimization, within a growing number of specialties (sec-
tion 2.4). In the next subsection, we confine ourselves to present an intuitive idea
of the working of these models.

5These types of applications can be considered subareas within the general class classification of
section 1.1.3.

6Other recurrent models like the Boltzmann machine [44], do include learning besides relaxation.
Our findings may also be applicable to the ‘relaxation phase’ of those networks.
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1.1.5 A mental image of relaxation in neural networks

Let us put aside all mathematical notations and concentrate on the general idea
behind the working of the Hopfield and allied models. We shall use a metaphor
originating from the world of physics which, in fact, makes real sense as will be
exposed later.

We imagine having a laboratory table with many magnets of various strengths
on it, whose initial direction can be adjusted as desired. It is further supposed that
the magnets can freely rotate after pulling over a lever. All magnets have their
own magnetic dipole field around them. If the lever is pulled over after having ini-
tialized the magnets in a randomly chosen direction, they will start rotating under
the influence of the mutual magnetic field forces. By the movement of the mag-
nets, the structure of the magnetic field constantly changes. The result is a com-
plex deterministic dynamic system. If we further suppose that energy dissipates in
some way (e.g., by friction and-or air resistance forces), the system will sponta-
neously ‘relax’ to an equilibrium state after a certain lapse of time.

Since the strengths of the local magnetic forces vary and there are very many
magnets, it is not unreasonable to suppose that there exist more than one different
equilibrium states of the system. Depending on the initialization of the direction
of all magnets, the system will find an equilibrium point, namely the ‘nearest’ one.
Stating the relaxation dynamics in mathematical physical terms, we say that the
system minimizes potential energy and settles down in that local minimum state,
which can simply be reached via a route ‘downhill’, away from the random initial
state. In figure 1.2, the process of energy minimization to a local minimum is vi-

system state

local minimum

A one-dimensional
energy surface

W

	

U

Figure 1.2: Energy minimization to a local minimum.

sualized. All system states are supposed to lie along the horizontal axis, while the
arrows denote the direction of the minimization process along the energy surface.
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It has been Hopfield’s merit that he observed that the relaxation dynamics of his
recurrent continuous neural network – itself a generalization of a certain binary
model – can be described by a type of deterministic process as discussed above.
It is probably also obvious that these ANNs can be useful in concrete optimiza-
tion applications, where a certain cost function should be minimized7. One should
merely choose a neural network whose energy function coincides with the given
cost function, initialize the network in one way or another, and then allow it to re-
lax: the final (equilibrium) state encountered is hoped to correspond to a (or the)
solution sought. This is the idea in a nutshell. However, in practice things are
generally much more complicated:

� In the first place, we are mostly interested in the global minimum of a cost
function, not in some local one. One way to solve this problem is to intro-
duce thermal fluctuations in the system by making the magnets stochastic.
To illustrate, we suppose that any magnet has only two opposite positions,
one with the magnetic north pole to, lets say, the right, and one with that
pole to the left. The actual position of a magnet depends on two factors,
namely on the current total magnetic field force (as caused by all other mag-
nets) as well as on the value of the current temperature in the system. All
magnets have a certain freedom in fluctuating randomly8 controlled by the
value of the temperature: the higher the temperature is, the more a magnet
randomly fluctuates. Lowering the temperature has the effect that all mag-
nets are more driven by the locally existing magnetic field forces. Looking
at the dynamic relaxation process of this stochastic system after a randomly
chosen initialization, we observe that at high temperatures, the system be-
haves randomly. However, at lower temperatures the system will relax to
another so-called dynamic equilibrium: the magnets may still fluctuate but on
average, they will prefer one direction over the other. Furthermore, owing
to the random fluctuations, the system is more or less disposed to relax to
the global minimum by kicking out encountered local minima. It should be
clear that this stochastic magnetic field system is even more complex than
the deterministic one described earlier.

� The second complicating factor is related to the first one. Practical prob-
lems are generally defined in a high-dimensional space where the minima
lie widely scattered around. In fact, the picture on the cover slightly lifts the
veil of this very complicated hilly world, although the image merely shows
a two-dimensional landscape. Under high-dimensional circumstances, it is
much more difficult to imagine how the addition of thermal fluctuations
might achieve a relaxation to the global minimum.

� In the third place, practice may be unruly since solutions of problems are
often submitted to a certain set of constraints. Among other things, this is
often the case in the field of combinatorial optimization problems. There
are several ways to deal with this phenomenon. The eldest approach ap-
plied in neural networks is the penalty method, but it did not turn out to be

7This approach has also been pioneered by Hopfield, in co-operation with Tank [48, 49].
8Random fluctuations correspond to so-called thermal noise: see section 2.1.2.
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very successful (see chapter 2). Another way is trying to incorporate the con-
straints in the neural net, which appears to be possible in some cases. This
approach is the subject of chapter 4. In chapter 5, we shall encounter still
other techniques among which modifications of the well-known mathemat-
ical method using Lagrange multipliers.

� To conclude, we should note that the actual mapping of combinatorial (opti-
mization) problems onto ANNs is far from trivial: in practice, there appear
to be many ways to realize such a mapping, each one having its own benefits
and drawbacks.

We conclude the metaphor as given in this section, by remarking that a stochastic
Hopfield neural network turns out to behave like the sketched stochastic magnetic
system. Moreover, it can be approximated by a certain, slightly adapted, continu-
ous, and deterministic model. In both cases, the neurons in the Hopfield models
correspond to the magnets in the magnetic counterpart models. The approxima-
tion of the stochastic system by such a deterministic system is an important topic
of the chapters 3 and 4.

1.2 Research objectives

Contemplating the ways in which science is exercised, we can distinguish several
approaches. Even within a specific area of science, one often encounters substan-
tial differences concerning methodology: research can be either fundamental or
applied, either explorative or mapped-out in advance, either inductive or deduc-
tive, etcetera. Additionally, the objectives of the research project at hand are of-
ten formulated a posteriori, that is, after having completed the actual work on it.
Realizing these aspects, it seems appropriate to first touch upon the evolution of
this research project before stating its objectives and justifying the methodology
selected.

1.2.1 History of the research process

This study on the relaxation dynamics of recurrent neural networks started in the
autumn of 1992. Actually, there was no explicit objective of study at that time.
There was a paper [51] originated from a master’s thesis which reported promis-
ing results with respect to a new way of tackling the travelling salesman prob-
lem using two Hopfield type neural networks. We further read the relevant parts
of the textbook [44] on Hopfield networks which gave rise to certain questions,
and we encountered the book of Takefuji [82] containing some theory and a lot of
applications. Very soon, we hit upon certain inconsistencies which begged for a
solution. At that time, we also found two articles [71, 86] concerning the use of
Lagrange multipliers in combination with neural nets which seemed not to get
the attention that they deserved after their publication. Eventually, the study and
elaboration of all this led to several new results, among which the notion of a dy-
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namic penalty method. Another consequence was the realization of our first publi-
cations9.

During that initial period, which also included some studies on combinatorial
optimization problems like the travelling salesman problem (TSP), the idea took
form to study the general relationship between Hopfield neural networks and the
so-called elastic net, the last one being a neural network especially set up to solve
the TSP. We studied Simic’s paper [77] (referred to in [44]) and other relevant ones,
and were promptly engrossed in a process of profound investigation. Simic’s arti-
cle appeared to contain many hard results, although most of the proofs were only
sketchy. To understand the details, we were forced to completely work out the
derivations. Calculus was the general tool of analysis. In addition, dynamic sys-
tems theory and statistical physics appeared to be of high importance: the first
one in order to study the stability of the relevant differential equations, the sec-
ond in order to exploit existing knowledge on certain thermodynamic models,
which have a close connection to the ANN models of our study10. This ultimately
yielded many new theorems, including the ones relating to a quite general result
of this thesis namely the most general framework of continuous Hopfield models. In
addition to all efforts in the theoretical field, we performed several simulations
whose computational results will be reported for a substantial part11. This part
of investigation also led to several (international) presentations and publications,
whose series does seem still not be exhausted.

Finally, a new master’s thesis project was undertaken yielding a new analysis
of the elastic net algorithm [35]. It turned to fit in precisely with our theoretical
experiences. It also contained (and further inspired us to try) various alternative
elastic net algorithms.

1.2.2 The aims of this study

From the sketch given above, it is clear that the precise subject of what to study
and all reasons why12, were not plain from the beginning. Instead, these insights
evolved gradually. Initially, the driving force was above all to understand why the
relevant models behave like they appear to do, particularly, when they are used to
solve combinatorial optimization problems. Very soon, the wish emerged to solve
certain inconsistencies we came across. Next, we wanted to extend existing theo-
ries, e.g., on the stability properties of the so-called Hopfield-Lagrange model. Fi-
nally, it turned out to be possible to generalize existing theories on Hopfield and
allied networks, both on the set of equilibrium conditions and on the stability of
the corresponding differential equations. Above all, the analysis has been mathe-
matical and physical. During the whole period, we tested whether the models of
study could be applied to solve combinatorial optimization problems in an ade-

9The references to our publications will be made more precise in the succeeding chapters.
10Simic [77] expresses this relationship in the following nice way: the ANN “algorithms are in a

deeper sense an example of what one may call a ‘physical computation’ ”.
11Besides a lot of encouraging results, the experimental outcomes indicate certain limitations con-

cerning the general applicability of the framework.
12At least one reason was obvious from the beginning namely, getting a Ph.D., a not-unimportant

by-product of all research efforts.
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quate way. These considerations taking together, we can now, a posteriori, define
the objectives of this research project as follows:

� The main objectives of this thesis are to explain13 the relaxation dynam-
ics of various recurrent (more precisely, Hopfield and allied) neural
network models, and to generalize existing theories on them.

� The secondary objectives are more diverse:

– the first one is to verify how the discovered theoretical results
can be used to reveal the relationship between Hopfield neu-
ral networks and the elastic net;

– the second one is to test whether the studied models can be
applied to solve certain combinatorial (optimization) prob-
lems in an adequate way.

From the arguments given in this subsection, the choice of the title of this thesis
should be obvious.

1.3 The chosen methodology: an apology

After having sketched the ‘what and why’ of this thesis, I14 consider it proper to
describe the ‘how’ of it too, or, stating this in other words, to illuminate the chosen
methodology in the light of what is often referred to as the ‘logic of science’ [87].
As is often done in this philosophic domain, we shall differentiate between two
aspects, namely, the so-called internalistic point of view and the broader external-
istic one.

1.3.1 The externalistic view

In the externalistic view on how science originates, it is considered essential to in-
clude a sociological analysis of the scientific process: e.g., what are the motives,
driving forces, beliefs, prejudices, and so on of the scientists involved. Further-
more, one should investigate the ‘context of discovery’, i.e., what is the scientific
culture of the area of science at hand. Another fundamental aspect to look at is
the ‘context of justification’, which concerns the ways how given theories are jus-
tified. This more restricted approach is often termed the internalistic view, and it
will be discussed in a separate section.

The philosopher Kuhn, who is considered an externalist, distinguishes two
types of periods during the growth of scientific knowledge [57]: after a ‘pre-
paradigmatic’ period, revolutionary and non-revolutionary stages succeed each
other. In a revolutionary period, inconsistencies lead to a rejection of the older

13The notion of ‘scientific explanation’ is far from simple. Hempel and Oppenheim [42, 87] have
formulated four conditions to call an explanation ‘adequate’: (a) what is explained should follow on
logical grounds, (b) the explanation should use other laws, (c) the explanation should have testable
consequences, and (d) the explanation should be true.

14Throughout this dissertation, I use the word ‘we’ for reasons as explained in the preface. This sub-
section is an exception, because the chosen methodology is the one specifically selected by me.
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theory, that is, the older ‘paradigm’, and to the formulation of a new one. In non-
revolutionary periods, inconsistencies encountered are either simply ignored or,
otherwise, adapted to the paradigm accepted everywhere.

Holding my exertions against the light of these considerations, it becomes clear
that it is not easy to give an unprejudiced judgement of my own. I myself join in
the neural network community, have been affected by it, and may even be indoc-
trinated, so perhaps, I am not aware of certain untenable starting points, motives,
or ideas. However, in spite of these imperfections, some general and some per-
sonal externalistic aspects can be observed. Let me first consider some general so-
ciological issues. The central premiss of all AI-research seems to be the belief that
human intelligence can somehow be (partially) modelled, using scientific means.
This matter is strongly related to the philosophic debate mentioned above in foot-
note 2. To illustrate, a group of researchers believes that human thinking is in fact
algorithmic, implying that, in principle, it can be emulated by a machine like a com-
puter. On the other hand, there are other groups of scientists who firmly oppose
against this ‘strong AI’ point of view, arguing, in one way or another, that the hu-
man mind is more than ‘just a collection of tiny wires and switches’ [33].

Considering the actions of the ANN community, I observe that the natural sci-
ences mathematics and physics are judged to be very helpful to model the capabil-
ities of the human mind. This belief has certainly been enforced by the success of
some ANN models (showing certain elementary brain abilities), which appeared
to be analyzable by means of mathematical physical models. Yet another common
belief in the community of AI is the idea that following the realized applications,
the research efforts will ultimately yield a lot of new practical applications and
thus, on that account, do make sense. In that manner, scientists may find a legit-
imation for their work. The afore-mentioned beliefs can be considered to belong
to the context of discovery. Together with other ideas on ANN models, they are
exchanged between researchers in the usual ways: papers, journals, and books
are published, discussions and talks are held at conferences. Owing to this, the
various paradigms of ANN theory have assumed a well-defined shape, each one
having its advocates and followers.

Considering my personal motives, I have already given an important one in
footnote 12. Another personal reason for choosing the subject of study of this the-
sis is that it precisely corresponds to a lot of foreknowledge I picked up during
my life. In relation to the context of discovery, I think that I have adjusted my-
self considerably to the current research customs in the area of neural networks
by reading much of the standard literature, by doing the same type of research,
and by presenting my results in the normal ways, both orally and in writing, to
the relevant research community.

Let me finish this section on the externalistic view with a personal opinion. In
the light of Kuhn’s philosophy, I feel that nowadays neural networks are in a non-
revolutionary stage of research. The discipline has several well-established basic
models and, in general, scientists are busy applying, refining, and understand-
ing them. I hold that the statements I bring out in this thesis, are refinements, im-
provements, illuminations, corrections, and generalizations rather than paradig-
matic revolutions. However, it will be other people who must decide this issue.
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1.3.2 The internalistic view

The pure ‘reconstruction’ of what has happened – including the justification of the
scientific results – is the central theme in the internalistic view on the growth of
scientific knowledge. The context of discovery is not considered here. Instead, a
scientist is thought to assume a more idealistic attitude: in the view of Popper [72],
a theory is proposed, and thereupon, it is tried to ‘falsify’ it. Precisely falsifications
increase scientific knowledge. It is impossible to establish absolute truth of any
theory. Theories are ‘conjectures’ which should be refuted, if there are reasons for
it. Let I consider my working-method in this view of Popper. I first try to describe
the method itself.

1. Any research effort on a new subject started by the collection of ‘the
relevant’ papers.

2. Depending on what was found, I tried to analyze, improve, correct,
generalize, apply, etcetera, inspired by mainly mathematical and phys-
ical ideas as evoked in my head and as available in ‘the relevant’ liter-
ature. The endeavors took place in at least the following ways:

– The technique I probably applied most was to make up an as sim-
ple as possible example corresponding to an encountered abstract
mathematical expression. Analyzing this simple ‘toy problem’ by
means of notions of calculus (sometimes supported by graphical
software packages) and physics, I tried to understand the essence.
In this inductive way, intuition grew and new ideas were born, in
turn leading to the suggestion of new theorems and insights. Of
course, these new discoveries had to be proven.

– Sometimes, I had got already a new insight without being able to
prove it15. Often, a lot of trial and error was necessary to find the
explicit proof.

– Another trick which I applied several times, was to switch be-
tween the mathematical and the physical point of view, especially
at points where the one way seemed to come to nothing.

3. Finally, the acquired insights and stated theorems had to be tested. This
has again been done in several ways:

– By re-inspection of the derivations: I must admit to have found
many self-made errors this way.

– By making up several simulation studies: I wrote many computer
programs to inspect (the consequences of) my suggestions16. Also

15Compare the pronouncement by Gauss: “Meine Resultate habe ich längst, ich such‘ nur noch den
Weg dazu” (restated in [87], p. 57.) or the observations by Penrose [67], in a discussion on the non-
algorithmic nature of mathematical insight: ”Rigorous argument is usually the last step! Before that,
one has to make many guesses, and for these, aesthetic convictions are enormously important – always
constrained by logical argument and known facts”.

16Some groups of computer scientists argue that the correctness of a computer program should al-
ways be proven using notions from mathematics (especially from logic). This is not a redundant lux-
ury: in computer science, a famous phrase states: “There is always a last bug”. Ironically, in this study
I did the opposite, namely, testing my mathematical theories using computer programs.
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in this way, I encountered many mistakes.
– Last but not least, I submitted papers and reports to colleagues,

both on my own department and on scientific conferences and
journals.

Looking back now, I see some limitations of my working-method. Whether I
found all ‘relevant’ papers, is very doubtful: the quantity of published papers
in proceedings, journals, books is overwhelming, even within a specialized disci-
pline like recurrent neural networks. So, I possibly missed certain relevant papers
and results.

The second point of the described working-method relates to the conjectures
of Popper. Even the mathematical theorems are conjectures: I frequently made
mistakes, some of which remained unnoticed for several weeks or so. Some prob-
ably still exist. However, I am not unique: as will be explained, I have met sev-
eral confusing mistakes by others, which engaged me for a substantial amount of
time and, simultaneously, inspired me to develop new conjectures. In fact, for a
substantial part, the new conjecturing statements of this thesis have grown out of
mistakes as made by others.

The last point, the testing phase of my working-method, consists of the efforts
to falsify my theories. Of course, I tried to find every error, and to what extent I
have been successful, is hoped to become clear in the near future. Actually, so far
as my attempts have failed, my conjectures still stand up, or, stating this in other
words, my as yet non-falsified conjectures are the body of this thesis17.

1.4 The outline of the rest of the story

We finish this chapter by explaining the structure of the remainder of this thesis. In
the next chapter, the theoretical starting points are given. It consists of a general
sketch of theoretical results collected from the technical literature, that together
are considered to form the necessary background and basis of the subsequent four
chapters: the relevant ANN models will be introduced, preceded by an introduc-
tion on statistical mechanics and succeeded by an overview of example applica-
tions. The foundations as given in chapter 2 are related to a collection of math-
ematical techniques. These ones are described in the appendices, the last one of
which consists of a list of applied lemmas including their proofs.

Chapter 3, 4, 5 and 6 constitute the kernel of this thesis. We start by analyz-
ing the so-called unconstrained stochastic Hopfield neural network and relate it
to the classical continuous Hopfield model. Since the mathematical functions in-
volved are rather complex, we use a separate section to illuminate their properties
by means of some simple examples. Next, an interesting part of chapter 3 opens
up where for the first time a more general framework is presented. Chapter 4 deals
with a certain constrained Hopfield model. Surprisingly, it can be analyzed in the
same way and it can also be generalized. The apotheosis is the aforesaid most

17Another logical consequence of this way of thinking is that, as far as my statements are correct, the
contents of this thesis can held to be trivial.
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general framework, where Hopfield networks are generalized to networks which
can model almost arbitrary energy expressions (instead of merely quadratic ones)
and which provide means for incorporating new types of constraints in the net-
work. However, experimental outcomes also show certain limitations of the gen-
eral framework.

Chapter 5 treats the Hopfield-Lagrange model. Most of this chapter is de-
voted to an analysis of the stability properties of the model. First, a potential
Lyapunov function is defined by means of which in certain cases stability of the
unconstrained Hopfield-Lagrange model can be proven. Second, stability of the
quadratic and allied constraints is demonstrated in a quite different way. In that
case, the model generally ‘degenerates’ to a type of the afore-mentioned dynamic
penalty model. Next, the theorem on the potential Lyapunov function for the un-
constrained Hopfield-Lagrange model is widened to one for the generalized con-
strained model.

In chapter 6, the investigations concerning the elastic net are presented includ-
ing its relation to the constrained Hopfield model of chapter 4: the surprising out-
come is that also the elastic net algorithm can be considered as a special type of
dynamic penalty method. A further analysis leads in a natural way to two alter-
native elastic net algorithms, which are investigated too.

Chapters 3, 4, 5, 6 all conclude with a few relevant computational results of
certain toy problems and applications tested. If the outcomes did not turn out
straightforward, corresponding comments are added. Finally, in chapter 7, we
draw our conclusions, discuss them, and do suggestions for future research.



Chapter 2

Starting points

In this chapter, the relevant theory of Hopfield neural networks will be sketched.
This theory constitutes the starting point of the explorations described in the rest
of this thesis. Before coming to the heart of the matter, a review of statistical me-
chanics is given: the theory about this subject turns out to be of great importance
for the understanding of stochastic Hopfield networks. We also present an intro-
duction on combinatorial optimization, the challenging application area. In the
succeeding chapters, we shall return to many aspects mentioned here.

2.1 Statistical mechanics

2.1.1 The basic assumption

The main goal of statistical mechanics [64] is to derive the macroscopic, i.e., physi-
cally measurable, properties of a system starting from a description of the interac-
tion of the microscopic components like atoms, electrons, spins. If we would take
the classical approach using a Hamiltonian system1, this would normally be an
impossible task: the huge number of microscopic components leads to a compa-
rable huge number of motion equations which cannot be solved practically. What
we need is a statistical approach yielding simpler models, which hopefully still in-
clude the essential physics and are tractable to analytic or numerical solutions [89].
To reach our goal this way, two subproblems can be distinguished: (a) Find the
probability distribution of the microscopic components in thermal equilibrium.
(b) Derive the macroscopic properties of the system using this probability distri-
bution.

Limiting our discussion to a discrete configuration space (meaning that the
space of all possible system states is countable), the basic assumption of statistical
mechanics concerning subproblem (a) is that in thermal equilibrium – that is, after

1In certain circumstances, the quantum mechanical approach resolving the Schrödinger equation
would be another, mostly non-adequate alternative.
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a sufficient long time – any of the possible states � occurs with probability

P eq
� =

1

Z
e��H� : (2.1)

Here,H� is the total energy, called the Hamiltonian, of the system and Z is a nor-
malizing factor, called the partition function, which equals

Z =
X
�

e��H� : (2.2)

Equation (2.1) is called the Boltzmann formula or Boltzmann equilibrium proba-
bility distribution. The value of � is related to the absolute temperature T by

� =
1

kT
: (2.3)

The constant k represents the Boltzmann coefficient, and, because it is only a scal-
ing factor, we can set it equal to 1.

Knowing the energy H� in every state, equation (2.1) can be used to calculate
the ‘thermal average’ hAi of any observable quantity A by application of

hAi =
X
�

P eq
� A�; (2.4)

where A� represents the particular value of A in state �.
Equation (2.1) will not be justified here. It can be made plausible from very

general assumptions on the microscopic dynamics of the particles [64] or, in a dis-
crete energy space, be derived from a calculation of the most likely distribution of
the particles over the various energy levels [4].

2.1.2 The free energy

It turns out very fruitful to define the so-called free or effective energy F by

F = � 1

�
lnZ: (2.5)

Using most of the above given equations as well as the fact that
P
� P

eq
� = 1, an

important relation can be obtained [44]:

F = � 1

�
lnZ = � 1

�

X
�

P eq
� lnZ

= � 1

�

X
�

P eq
� (��H� + �H� + lnZ)

=
X
�

P eq
� H� +

1

�

X
�

P eq
� ln

e��H�

Z

= hHi � 1

�
Seq; (2.6)
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where hHi equals the thermal average of the Hamiltonian and where

Seq = �
X
�

P eq
� lnP eq

� (2.7)

is the ‘entropy’ at thermal equilibrium, which appears to be a measure of the dis-
order of the system.

Equation (2.6) is derived under the assumption that the system is in thermal
equilibrium described by the probability distribution (2.1). Instead, we now con-
siderF as a function of an arbitrary probability distribution P = (P1; P2; : : : ) given
by

F (P ) = E(P )� 1

�
S(P ) (2.8)

=
X
�

P�H� +
1

�

X
�

P� lnP�: (2.9)

From this equation, a variational principle2, called the principle of minimal free
energy, can be derived [64] which states that a minimum of F (P ) corresponds to
the equilibrium probability distribution (2.1). The proof is based on the Lagrange
multiplier method (appendix A) taking as the only constraint

P
� P��1 = 0. The

principle of minimal free energy (which is strongly related to the famous principle
of maximal entropy3) hands us a tool for calculating a stable equilibrium probabil-
ity distribution at given temperature T = 1=�: we ‘only’ need to find the location
of the minima of F (P ).

From (2.1) it follows that the equilibrium probability distribution is a func-
tion of both the energy levels H� and the temperature T . It is sometimes said
that the free energy ‘knows about the (thermal) noise’ of the system, i.e., it ‘de-
pends in a non-trivial way on the temperature’ [77]. From (2.9) we conclude that
at high enough temperatures, F (P ) is generally dominated by the second term of
the right-hand side. This term appears to be a smooth and convex [25] function
of P and will be called the thermal energy of the system. Thus, in circumstances
of high temperature, F (P ) has only one minimum and the equilibrium probabil-
ity distribution is (almost) uniform. On lowering the temperature, the thermal en-
ergy decreases and the free energy becomes more and more dominated by the first
term of the right-hand side of (2.9) implying that, at thermal equilibrium, the sys-
tem will have settled down in states of lowest energy H�.

2The calculus of variations is concerned with maxima and minima of functionals, where a functional
is defined as a function J : 
! R, 
 being a space of functions [7].

3The principle of maximal entropy, the second law of thermodynamics, holds for isolated systems,
i.e., systems which have not any thermal interaction with their environment. Instead, the minimum of
free energy holds for systems whose temperature is kept fixed via heat exchange between the system
and its environment: the system is contained in a ‘heath bath’ of constant temperature. Both entropy
and free energy are ‘thermodynamic potentials’. The extreme values of these potentials are ‘attractors’
to which the corresponding thermodynamic systems spontaneously evolve [74].



20 Starting points

2.1.3 Spin glasses

Statistical mechanics has been applied successfully to a large variety of systems.
In the context of our future discussions on neural networks, the techniques as used
for the study of so-called spin and other glasses – these are certain types of more
or less disordered magnetic systems – appear to be extremely relevant: the anal-
ysis and understanding of Hopfield neural networks is strongly facilitated by the
theory on these magnetic systems.

The microscopic elements of spin glasses are elementary atomic magnets, so-
called spins, fixed in location but free to orient, interacting strongly but randomly
with one another through pairwise forces [76]. In so-called Ising models, the mag-
netic orientation Si of any spin i is supposed to be binary, where Si 2 f�1; 1g. If
n is the number of spins, the Hamiltonian of the magnetic system is defined as

H(S) = � 1
2

X
i;j 6=i

wijSiSj �
X
i

IiSi; (2.10)

where S = (S1; S2; : : : ; Sn) is a global microstate. The wij ’s correspond to contri-
butions from pair-wise magnetic forces and the Ii’s represent external magnetic
field values. Adding up the magnetic force contributions from all the other spins
together with the external magnetic force, the total local magnetic field hi for spin
i equals

hi =
X
j 6=i

wijSj + Ii: (2.11)

Instead of taking Si 2 f�1; 1g, we shall adopt Si 2 f0; 1g throughout this thesis
because this will facilitate the mapping of combinatorial optimization problems
on Ising models4.

Substitution of (2.10) in (2.2) yields as partition function of the spin glasses sys-
tem

Zsg =
X
S

exp(�( 12

X
i;j 6=i

wijSiSj +
X
i

IiSi)): (2.12)

The thermal average hSii can be stated as

Si =
1

Zsg

X
S

[Si exp(�(
1
2

X
i;j 6=i

wijSiSj +
X
i

IiSi))]: (2.13)

Knowing Zsg as a function of the Ii’s, hSii can directly be obtained by differentia-
tion conform

hSii = 1

�Zsg

@Zsg

@Ii
= T

@ lnZsg

@Ii
: (2.14)

4Conversion from the one binary system to the other one, vice versa, is easy. Taking S0

i 2 f�1; 1g
and Si 2 f0; 1g, it follows that S0

i = 2Si � 1. The choice between the two types is a matter of mathe-
matical convenience effecting the values of the quantitieswij and Ii somewhat. Of course, this slightly
modifies the physical meaning of these quantities too.
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Writing P (S1 = s1; S2 = s2; : : : ; Sn = sn) = P (S) and P (Si = si) = P (Si), where
si 2 f0; 1g, the free energy (2.9) becomes

Fsg(P ) =
X
S

P (S)(� 1
2

X
i;j 6=i

wijSiSj �
X
i

IiSi) +
1

�

X
S

P (S) lnP (S): (2.15)

If all values wij are positive, the system is called ferromagnetic and parallel spins
are energetically favored. In thermal equilibrium, above a certain critical tem-
perature Tcr, the thermal fluctuations will beat the magnetic interactions making
8i : hSii � 0:5, and the material loses nearly all its magnetization. Below Tcr,
the magnetic interactions beat the thermal fluctuations in a certain degree mak-
ing 8i : hSii 6= 0:5. Depending on the values of the wij ’s, the Ii’s, and T , the spins
are found predominantly up or predominantly down. In the presence of an exter-
nal magnetic field, the system will always be oriented in the direction of that field.
In the absence of such a field, the system shows a time-independent ‘spontaneous’
magnetization [64], whose direction is not known in advance. It is also said that
the ferromagnetic system exhibits a ‘phase transition’ at Tcr.

If instead, the values wij are negative – which often is the case when Hop-
field networks are used to solve combinatorial optimization problems – the sys-
tem is termed anti-ferromagnetic. Depending the values of the wij ’s, the Ii’s, and
T , nearby spins now tend to become more or less anti-parallel [64], meaning that
neighbouring Si’s will be found in ‘opposite’ states (i.e., 0 and 1). If the third pos-
sibility holds that certain wij are positive and other ones negative, the system has
conflicts (also called frustration) with regard to the global orientations. The con-
sequence is a system with several non-equivalent meta-stable global states [76].

2.1.4 Statistical dynamics and annealing

As mentioned in the beginning of this chapter, statistical mechanics especially
deals with the equilibrium properties of a system. The driving mechanism by
which the particles of the system – on account of their mutual interaction – are di-
vided over the available energy levels resulting in dynamic equilibrium, is often
ignored. However, applying numerical simulations (as is often done when ana-
lytic methods are inadequate), a dynamic rule has to be chosen in advance. It ap-
peared to be possible to construct various (both deterministic and probabilistic)
dynamics having the property of leading to thermal equilibrium. In the proba-
bilistic case5, the chosen algorithms frequently have the property that the proba-
bility of finding the system in state �t only depends on the preceding state �t�1
(and not on the history prior to state �t�1). These algorithms are completely de-
scribed by the transition probabilities

Ptr(�; �
0) = P (�t = �0 j �t�1 = �): (2.16)

In practice, many of the transition probabilities corresponding to the selected dy-
namics are zero.

5The deterministic case we shall meet in section 2.3.
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If the algorithm is ‘ergodic’ (meaning that any state is reachable from any other
state by way of a finite number of intermediate states), and if the transition prob-
ability satisfies the so-called detailed balance condition

Ptr(�; �
0) e��H� = Ptr(�

0; �) e��H�0 ; (2.17)

the system relaxes to equilibrium from an arbitrary starting state [64]. The condi-
tion (2.17) does not specify the transition probability uniquely. A very common
choice in simulations is the Metropolis algorithm [44, 89], which applies the tran-
sition probability

Ptr(�; �
0) =

�
1 if �H < 0
e���H otherwise, (2.18)

where �H = H�0 � H�. We see that a transition from state � to �0 is accepted
with probability 1 if the corresponding change of the Hamiltonian is negative. De-
pending on a probabilistic outcome, the transition may also be accepted if the cor-
responding energy change is positive. The underlying idea of this strategy is that
the algorithm may escape from local minima. The Metropolis algorithm satisfies
the detailed balance condition so that, at a fixed temperature, it leads to thermal
equilibrium.

In condensed matter physics, ‘annealing’ is a technique for obtaining low en-
ergy states of a solid in a heat bath. The process consists of two steps:

� Increase the temperature of the heat bath to a value at which the solid melts.

� Carefully decrease the temperature of the heath bath until the particles ar-
range themselves in the ground state of the solid.

The physical annealing can be simulated using computer power yielding what
is called simulated annealing. The most common approach is just to apply the
Metropolis algorithm, where the temperature is decreased step by step. The tem-
perature is called the control parameter. Using Markov chains, asymptotic con-
vergence of the algorithm has been proven [2]. Furthermore, a lot of empirical
performance analysis has been done in order to get practical, finite-time approxi-
mations. The algorithm has been used to solve, among other things, combinatorial
optimization problems.

2.1.5 Mean field theory

Beside simulation, there exist various analytic techniques [64, 89] in order to un-
derstand statistical mechanical models like the ‘power series expansions’, the
‘real normalization group’, the ‘field theoretical approach’ and, the simplest one
termed the ‘mean field approximation’. The essential ingredient of the mean field
theory is the neglect of thermal fluctuations of the individual neurons. Instead,
one considers the average effect of these fluctuations. One starting point of mean
field theory is the principle of minimal free energy. Instead of looking for the true
minimum of the free energy (2.9), certain restrictions are imposed on the proba-
bility distribution.
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An example consists of a mean field analysis of the spin glasses with Hamiltonian
(2.10), where (wij) = (wji). Using the simplest approximation, the probability
distribution is assumed to be factorized meaning that the spins are treated as in-
dependent described by

P (S) = P (S1)P (S2) : : : P (Sn): (2.19)

Referring to the average magnetization hSii as Vi, it follows that P (Si = 1) = Vi
and P (Si = 0) = 1� Vi. Using all this, we can write

E(P ) =
X
S

P (S)H(S)

=
X
S

P (S1)P (S2) : : : P (Sn)(� 1
2

X
i;j 6=i

wijSiSj �
X
i

IiSi)

= � 1
2

X
SiSj

P (Si)P (Sj)
X
i;j 6=i

wijSiSj �
X
Si

P (Si)
X
i

IiSi

= � 1
2

X
i;j 6=i

wijViVj �
X
i

IiVi; (2.20)

S(P ) = �
X
S

P (S1)P (S2) : : : P (Sn)(lnP (S1) + lnP (S2) + : : :+ lnP (Sn))

= �
X
i

(Vi lnVi + (1� Vi) ln(1� Vi)): (2.21)

Under the conditions (2.19), the free energy of the spin glasses can thus be stated
as

Fsgmf
(V ) = � 1

2

X
i;j 6=i

wijViVj �
X
i

IiVi +

1
�

X
i

(Vi lnVi + (1� Vi) ln(1� Vi)): (2.22)

The necessary condition for finding a minimum of Fmf yields (using wij = wji)

@Fsgmf
=@Vi = �

X
j 6=i

wijVj � Ii +
1

�
ln

Vi
1� Vi

= 0: (2.23)

Resolving this equation, we finally find that at thermal equilibrium

Vi = g�(~i) =
1

1 + e(��~i)
^ ~i =

X
j 6=i

wijVj + Ii; (2.24)

where ~i equals the effective magnetic field. The function g� is the sigmoid or lo-
gistic function (see figure 2.1). For high values of the temperature T = 1=�, we
see that Vi � 0:5, which corresponds to the outcome of the analysis of the ex-
act free energy (2.15): the system is almost completely disordered. For low val-
ues of the temperature, the sigmoid function approximates the step or Heaviside
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Figure 2.1: The logistic function for various values of �.

function implying that, on average, the spin i equals 0 or equals 1 depending
on the value of the effective magnetic field: the system shows an ordered struc-
ture. Despite the simplicity of the expressions, the mean field approximation has a
rich structure. Many physical phenomena like spontaneous magnetization, phase
transitions, stability, metastability and unstability, can be described by the model
[64, 89].

Comparing (2.11) and the second expression in (2.24), we see that the first, ex-
act equation takes the spin fluctuations into account, while in the second one, the
fluctuations Si are replaced by their average value Vi. In other words, the stochas-
tic magnetic field is replaced by an effective field as given by its mean field approx-
imation.

2.2 Combinatorial optimization

2.2.1 Definition and complexity

Solving combinatorial optimization (i.e., either minimization or maximization)
problems deals with the determination of the ‘best’ solution among a set of alter-
native solutions. In case of minimization, a combinatorial optimization problem
can be defined [34] as a minimization problem consisting of a set of problem in-
stances. For each instance, there is a finite set Sc of candidate solutions, where a
cost function f : Sc ! R exists that assigns a real number (the solution value)
to each candidate solution c 2 Sc. An optimal solution is a candidate solution c�

such that

8c 2 Sc : f(c�) � f(c): (2.25)

Candidate solutions can often be described by means of bond variables and the
optimization problem as a whole is often described by a ‘constrained’ combinato-
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rial minimization problem, stated as

minimize f(x)

subject to : C�(x) = 0; � = 1; : : : ; n; (2.26)

where x = (x1; x2; : : : ; xn). The C�(x)’s are the so-called constraints to which
candidate solutions are subjected.

Over the years, it has been shown that many combinatorial optimization prob-
lems belong to the class of so-calledNP-hard problems. For several reasons [34],
it is generally believed that all problems of this class are ‘intractable’ meaning that
there exist no algorithms with running time polynomial in the input size. In prac-
tice this means that optimal solutions of ‘large’ instances of this type of problems
cannot be obtained in ‘reasonable’ amounts of computation time.

2.2.2 Examples

Among all combinatorial optimization problems, the traveling salesman problem
(TSP) – which has been proven to be NP-hard – is probably the best known. A
problem instance of the TSP consists of n cities and an n� n-matrix (dpq), whose
elements denote the distance between each pair (p; q) of cities. A candidate solu-
tion is a ‘tour’, which is a closed path along all cities with the constraint that each
city is visited exactly once. The goal is to find a tour of minimal length.

Another combinatorial optimization problem, which will also be tried, is the
‘weighted matching problem’ (WMP). An instance of the WMP consists of n (n be-
ing even) points again with known mutual distances (dpq). A candidate solution
is given by a state, where the points are linked together in pairs, with (the con-
straint of) each point being linked to exactly one other point. The goal is to find
minimal total length of the links. Unlike for the TSP, for the solution of WMP exist
fast polynomial algorithms [44].

2.2.3 Solving methods

Since many NP-hard optimization problems are of practical interest, a lot of ef-
fort has gone into solving them one way or another. The solution strategies can
be roughly divided in two categories [34]. Applying an algorithm of the one cat-
egory, it is tried to obtain an improvement over the straightforward exhaustive
search approach. Examples are methods based on ‘branch-and-bound’ or ‘back-
tracking’ consisting of a tree-structured search bounded by recognizing that some
partial solutions can impossibly be extended to actual solutions or to solutions of
better quality than the best one already found. Other approaches of this category
apply alternative ways of organizing the search like ‘divide and conquer’ and ‘dy-
namic programming’ methods [52]. Applying the first of these two approaches, a
problem is split into smaller ones, the smaller problems are resolved (by recur-
sively applying the same technique), and their solutions are combined into the
solution of the original problem. Applying dynamic programming on the other
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hand, the solution of a problem is built stage-wise, where at each stage a new as-
pect of the problem is added until the solution to the original problem has been
found.

The other category of algorithms apply a ‘heuristic’ approach, where it is at-
tempted to find a ‘good’ solution within an acceptable amount of time. ‘Local
search’ algorithms [1] are an example of this category. These algorithms take some
solution and search over a set of neighbouring solutions, in this way trying to find
solutions of lower cost.

Within the two classes, it is possible to distinguish between ‘tailored’ and ‘gen-
eral’ algorithms [2]. Tailored algorithms use problem-specific information (do-
main knowledge) and their applicability is therefore often very limited. Instead,
general algorithms are appropriate to a wider variety of problems and it is of high
importance to discover general methods which – as a rule – perform well. In the
last decade, several new general search algorithms have emerged, all inspired by
optimization principles observed in nature. They are simulated annealing, ‘ge-
netic’, and neural network algorithms. Solving combinatorial optimization prob-
lems using simulated annealing (section 2.1.4) is based on the assumptions [2] that
(a) solutions in the optimization problem are equivalent to states of a physical sys-
tem, and (b) the cost of a solution is equivalent to the energy of a state.

Genetic algorithms [36] try to solve problems based on the principles of natural
evolution. The algorithm keeps up a population of candidate solutions. New gen-
erations of candidate solutions are successively created applying ‘selection’, ‘mu-
tation’ and ‘crossover’ operations, where the ‘fittest’ solutions have the highest
probability of being selected. It is hoped that the fitness of the population mem-
bers gradually improves and, finally, a member among them is found with op-
timal fitness. The assumptions for applying genetic algorithms to combinatorial
optimization problems are that (a) candidate solutions of the optimization prob-
lem can be represented as population members (and therefore can be selected, mu-
tated, and crossed over), and (b) the cost of a solution is equivalent to the fitness
of the corresponding population member.

This last class of algorithms refers to neural networks, whose relevant types
are introduced now.

2.3 Classical Hopfield models

2.3.1 The asynchronous model

In 1982, Hopfield6 showed how useful, computational properties can emerge as
collective properties of neural systems [46]. The collective properties of his neu-
ral network produce a content-addressable memory. Each neuronSi has two (out-
put) states: Si = 0 or Si = 1, the other neural quantities are equivalent to those
defined in section 1.1.4. The iterative algorithm for the time evolution of the sys-

6To be somewhat more exact historically, Hopfield’s binary model is a stochastic reinterpretation of
an earlier model by Amari (1977). The difference lies in the way the neurons are updated: in Amari’s
model this is done synchronously, in Hopfield’s model this is assumed to occur asynchronously [54].
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tem state7 S = (S1; : : : ; Sn) 2 f0; 1gn can be formulated as (compare the equations
(1.2) and (1.3))

Snew
i =

�
1 if Uold

i =
P
j wijS

old
j + Ii � �i

0 otherwise,
(2.27)

where �i represents the threshold value of neuron i and where each neuron read-
justs its state randomly in time but with equal mean rate. The importance of Hop-
field’s approach stems from his proof on stability considering the energy function

Ea(S) = � 1
2

X
i;j

wijSiSj �
X
i

IiSi +
X
i

�iSi: (2.28)

Theorem 2.1 (Hopfield). If (wij) is a symmetric matrix and 8i : wii � 0, then the
energy function (2.28) is a Lyapunov8 function for motion equations (2.27).

If all threshold values �i equal zero, then Ea(S) nearly coincides with equation
(2.10). In addition, Ui corresponds to the local magnetic field hi in (2.11).

The asynchronous character makes the flow of the system not entirely deter-
ministic, but in any case, the algorithm leads to a final attractor (like a memory)
near the starting state. Stated in other words, the algorithm ends up in a local min-
imum. It explains the suitability of this neural network to model an associative
memory.

2.3.2 The continuous model

In 1984, Hopfield generalized the asynchronous model to a deterministic one [47]
using continuous-valued neurons with input values Ui 2 R and output values
Vi 2 [0; 1]. Instead of using an iterative updating rule like

V new
i = g(Uold

i ) = g(
X
j

wijV
old
j + Ii); (2.29)

Hopfield introduced the updating rule (motion equation)

ci _Ui = �@Ec(V )

@Vi
=
X
j

wijVj + Ii � Ui; (2.30)

where continuously Vi = g(Ui) holds and where ci represents a suitable time con-
stant. In our simulations, we shall approximate the time derivative of Ui by writ-
ing

_Ui � �Ui
�t

(2.31)

7Another, wider view on the notion of a ‘system state’ will be discussed in section 3.3.1.
8The notions of ‘stability’ and ‘Lyapunov function’ come from the theory on ‘dynamic systems’: see

appendix B.
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and then choose an appropriate value of �t. If we confine ourselves to equal val-
ues for all ci, no further restrictions are introduced if we simply take 8i : ci = 1.
So, this will be done. The updating rule (2.30) can be derived using the circuit
equations of an analogue electrical circuit implementing the continuous Hopfield
model: it represents a resistance-capacitance charging equation that determines
the rate of change of Ui. Mathematically, as denoted in equation (2.30), it can be
derived applying the technique of gradient descent (appendix C) to the energy
function Ec(V ) which is defined conform

Ec(V ) = � 1
2

X
i;j

wijViVj �
X
i

IiVi

| {z }
+
X
i

Z Vi

0

g�1(v)dv

| {z }
(2.32)

= E(V ) + Eh(V ) : (2.33)

Here,E(V ) is the energy function to be minimized. The second term, Eh(V ), will
be called the ‘Hopfield term’. V 2 [0; 1]n is the state vector (V1; : : : ; Vn) of the
continuous neural net. We further note that Ui = @Eh=@Vi. In figure 2.2, a picture
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Figure 2.2: The continuous Hopfield network with equilibrium condition:
8i : Ui =

P
j wijVj + Ii and Vi = g(Ui).

of the continuous Hopfield model is given. It can be used to explain the working
of the motion equations (2.30). After initialization, the network is generally not in
an equilibrium state. Then, while keeping the relations Vi = g(Ui) valid, the input
valuesUi are adapted in agreement with (2.30). The following theorem, proven by
Hopfield [47], gives conditions for which an equilibrium state will eventually be
reached:

Theorem 2.2 (Hopfield). If (wij ) is a symmetric matrix and if 8i : Vi = g(Ui) is a
monotone increasing, differentiable function, then Ec is a Lyapunov function for motion
equations (2.30).
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Under the given conditions, the theorem guarantees convergence to an equilib-
rium state of the neural net where

8i : Vi = g(Ui) ^ Ui =
X
j

wijVj + Ii: (2.34)

If the sigmoid function is chosen as the transfer function g, we see that expression
(2.34) almost coincides with (2.24).

In his article, Hopfield dwells on the relation between the energy Ea of the
asynchronous model and Ec of the continuous one. In order to understand the
relationship, he introduces a scaling factor � (in the original paper denoted by �)
replacing Vi = g(Ui) by Vi = g(�Ui). He then argues that, in the high-gain limit
� ! 1, the Hopfield term Eh becomes negligible, making the locations of the
extrema of Ec and Ea almost equal. Next, he remarks that for large but finite �-
values, the Hopfield term begins to contribute, leading to an energy surface whose
maxima are still at corners of the hypercube [0; 1]n, but whose minima are slightly
displaced toward the interior. We will return to these aspects in section 3.2.2.

The conditions given in theorem 2.2 do not uniquely specify the transfer func-
tion g of a neuron. Commonly used functions include the tanh for the [�1;+1]
range (used, e.g. in [68], in the iterative way given by equation (2.29)) and the sig-
moid function (2.24) for the [0; 1] range. We shall meet other activation functions
later on.

2.3.3 The stochastic model

It is possible to make the neurons of the binary asynchronous network behave
stochastically9 [44] applying a stochastic evolution rule like the transition prob-
ability (2.18) of the Metropolis algorithm. Instead, in the context of neural net-
works, another form is usually chosen that is suitable for parallel computation [3]:
regardless of the previous state, the probability of setting Si = 1 is taken

P (Si = 1) =
1

1 + e��Ui
: (2.35)

The units are selected in the same asynchronous way mentioned in section 2.3.1.
It is not difficult to check [44] that the updating rule (2.35) leads to a transition
probability which satisfies the detailed balanced condition (2.17). So, the stochas-
tic Hopfield model is expected to reach thermal equilibrium conform the Boltz-
mann probability distribution. It is therefore sometimes called a Boltzmann ma-
chine with a priori chosen weights [44]. As the Metropolis algorithm makes it pos-
sible to escape from local minima, so the stochastic rule (2.35) does. This observa-
tion has suggested the idea trying to use stochastic Hopfield networks in order to
find global minima of optimization problems. Besides, annealing can be applied
by decreasing the temperature gradually during execution yielding a new form
of simulated annealing.

9Still another possibility is to make continuous neurons behave stochastically [37].
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The asynchronous Hopfield model can be considered a special case of the stochas-
tic one: at very low temperatures, the noise level (i.e., the level of the thermal fluc-
tuations) is negligible reducing the stochastic model to the asynchronous Hopfield
model. This can be understood mathematically by observing that for � ! 1 the
sigmoid function (2.35) reduces to the step function as defined in (2.27). The con-
tinuous and the stochastic Hopfield network are also related. Because the energy
expressions (2.10) of the Ising model and (2.28) of the stochastic Hopfield model
almost coincide, a mean field analysis of the last one can be done precisely con-
form the analysis of section 2.1.5, yielding the equilibrium equations (2.34). This
proves the following theorem:

Theorem 2.3. The equilibrium states of the mean field approximation of the binary
stochastic Hopfield model coincide with the equilibrium states of the continuous Hopfield
model, if, in the last model, the sigmoid function is chosen as the transfer function of the
neurons.

In the literature [68, 44], several other proofs can be found which usually adopt
the ‘saddle point approximation’ (see section 3.1). The theorem makes clear that
the binary stochastic neural network can be approximated by the continuous one,
or, stated more precisely [68]:

“The hill-climbing property of the stochastic model at non-zero temperature
can be cast into a deterministic procedure in a smoother energy landscape.”

Consequently, if the networks are simulated on a sequential computer device, the
problem of excessive computer time of the stochastic model is hoped to be cir-
cumvented applying the approximating, continuous model: the deterministic re-
laxation rule (2.30) is expected to converge much faster than the stochastic rule
(2.35) 10. If, in addition, annealing is applied, the simulated annealing approach
of the stochastic model reduces to, what has been termed ‘mean field annealing’
[44, 50, 68, 69, 70]. Then, on lowering the temperature, fine details of the original
cost function E(V ) gradually appear [77].

2.4 Hopfield networks and optimization

This section is meant to give a concise background on the application of Hopfield
networks in the field of combinatorial optimization. We shall return to many as-
pects later on.

As for simulated annealing and genetic algorithms assumptions have been for-
mulated to solve combinatorial optimization problems in a heuristic way (section
2.2.3), so this can be done for Hopfield neural networks. Here, the assumptions
are that (a) candidate solutions of the optimization problem are equivalent to net-
work states, and (b) the cost of a solution is equivalent to the energy value of the

10Alternatively, the deterministic iterative rule (2.29) can be chosen: experiments of this type have
shown significant speedup factors, together with comparable and sometimes even better quality of
solutions [68, 70, 43].
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network. Since 1985 [48], researchers have tried to use both stochastic and contin-
uous Hopfield networks in the field of combinatorial optimization. The general
problem can be stated like (2.26), where the cost function f(x) should be replaced
by an energy function E(x):

minimize E(x)

subject to : C�(x) = 0; � = 1; : : : ;m; (2.36)

x being the state vector (S or V ) of the neural net. There exist different ways in
treating the constraints. The oldest approach consists of a so-called penalty method,
sometimes called the ‘soft’ approach [77, 69]: extra ‘penalty’ terms are added to
the original energy function, penalizing violation of constraints. We nowhere
found a precise definition of the penalty method. Having collected many exam-
ples, we think the following characterization reflects the issue at stake: the penalty
terms are weighted and chosen in such a way that

mX
�=1

c�C�(x) has a minimum value zero,

x represents a valid solution: (2.37)

A valid (admissible, or feasible) solution is defined as a candidate solution which
complies with all submitted constraints. Usually, the chosen penalty terms are
quadratic expressions. Applying a continuous Hopfield network, the original
problem (2.36) is converted into

minimize Ep(V ) = E(V ) +

mX
�=1

c�C�(V ) +Eh(V ); (2.38)

E(V ) and Eh(V ) being given by (2.33). The corresponding updating rule is:

_Ui = �@Ep

@Vi
= � @E

@Vi
�
X
�

c�
@C�
@Vi

� Ui; (2.39)

where, in case of (wij) = (wji), �@E=@Vi =
P
j wijVj + Ii. We already know

from Hopfield’s analysis (section 2.3.2), that the influence of the Hopfield term
Eh(V ) may be small. Ignoring this term for the moment, the energy function Ep
is a weighted sum ofm+1 terms and hence a difficulty arises in determining correct
weights c�. The minimum of Ep is a compromise between fulfilling the constraints
and minimizing the original cost function E(V ). Applying this penalty approach
to the TSP [20, 48, 49, 88], the weights had to be determined by trial and error.
For only a small low-dimensional region of the parameter space valid tours were
found, especially when larger problem instances were tried11.

In a second approach, the features of the neural net are changed. The alter-
ation is usually done in such a way, that some or all constraints are automatically

11Aside we mention that for ‘purely combinatorial problems’ (by which we mean combinatorial
problems without a cost function to be minimized like the n-queen problem and the 4-coloring prob-
lem), the penalty method has proven to be useful [82]. See also section 2.7.
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fulfilled. This way of dealing with the constraints is sometimes called the ‘strong’
one [77]. As an example, observe the following constraint

nX
i

Si � 1 = 0: (2.40)

A consequence of (2.40) is that precisely one of the binary Si’s equals one, all the
other ones being 0. Physically, this model is related to Potts glasses. Trying to
solve the TSP, condition (2.40) can be used several times in order to guarantee that
all cities are visited once. The other condition – that two cities are never visited at
the same time – can be fulfilled in the soft way using penalty terms. A mean field
annealing approach using an iterative updating role of the form

V new
i =

exp(��Uold
i )P

k exp(��Uold
k )

; (2.41)

has shown ‘encouraging’ results: experiments for problem sizes up to 200 cities
yielded solutions with a quality comparable to and sometimes even better than
the simulated annealing one. Besides, stability analyses including an estimation
of the critical temperature (at which a phase transition takes place corresponding
to a rapid drop of the energy in the system) have been reported [85, 69, 70, 78].
Another way of implementing the constraint (2.40) is to use so-called ‘maximum
neurons’ defined by

Si =

�
1 if Ui = maxfU1; : : : ; Ung
0 otherwise. (2.42)

They have been applied for, among other things, finding near-optimum solutions
of ‘channel routing problems’ [82]. Another way of changing the features of the
neural net has been the introduction of an extra layer. In an attempt to solve the
TSP [51], a first layer was chosen conform a continuous Hopfield network where
the penalty term is based on city adjacency in the tour. The second layer of the
network had to detect, in parallel, closed sub-tours of intermediate solutions. Un-
fortunately, the implementation of the second layer is more complicated than was
indicated.

A third way of treating the constraints was introduced in 1988 [71]. Here, the
starting point is the multiplier method of Lagrange (appendix A), where a con-
strained optimization problem is converted into an unconstrained extremization
one: a solution of the general problem (2.36) is also a critical point of

Epb(V; �) = E(V ) +

mX
�=1

��C�(V ); (2.43)

where � is a vector of multipliers (�1; � � � ; �m). Contrary to the requirement (2.37)
used in the penalty approach, the constraints should now be formulated such that

8� : C�(x) = 0, x represents a feasible solution: (2.44)
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Moreover, the multiplier values are not supplied by the user, but, after having
been initialized, are determined by the system itself: conform the so-called ba-
sic differential multiplier method (BDMM), the values of the Lagrange multipli-
ers can be estimated applying a gradient ascent12. The complete system of motion
equations of the model equals

_Vi = �@Epb

@Vi
= � @E

@Vi
�
X
�

��
@C�
@Vi

; (2.45)

_�� = +
@Epb

@��
= C�(V ): (2.46)

Stability can be analyzed by combining both of these differential equations into
one second-order differential equation, which describes a damped harmonic mo-
tion. The total energy of the mass system consists of the sum of kinetic and poten-
tial energy given by

Ekin+pot =
X
i

1
2
_V 2
i +

X
�

1
2C

2
�(V ): (2.47)

Theorem 2.4 (Platt & Barr). If the damping matrix (aij) defined by

aij =
@2E

@Vi@Vj
+
X
�

��
@2C�
@Vi@Vj

(2.48)

is positive definite, then the energy (2.47) is a Lyapunov function for motion equations
(2.45) and (2.46).

Using the definition ofE(V ) as given by (2.33), it is clear that if (wij) is symmetric
then

@2E

@Vi@Vj
= �wij : (2.49)

We further note that in formula (2.45) the gradient descent onEpb is equated to the
time derivative of Vi and not of Ui, as is done in the continuous Hopfield model.
Moreover, the term �Ui is lacking and, corresponding to this, the Hopfield term
Eh(V ) in (2.43) is missing. The necessary steps to bring these things into line with
one another were made in 1989 and are explained in the next section.

2.5 The Hopfield-Lagrange model

By adding the Hopfield termEh(V ) to the energyEpb(V; �), the continuous Hop-
field model and the Lagrange multiplier method were integrated [86] in what we
shall call the Hopfield-Lagrange model. The model was used to solve the Multiple
TSP (MTSP). The MTSP is an extension of the TSP, where a set of minimal closed

12The background of this sleight will be illuminated extensively in chapter 5.
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routes should be found for a given number of salesmen. The constraints are sim-
ilar to those of the original TSP. In general terms, the energy of the model is given
by

Ehl(V; �) = E(V ) +
X
�

��C�(V ) +Eh(V ) (2.50)

= � 1
2

X
i;j

wijViVj �
X
i

IiVi +
X
�

��C�(V ) +Eh(V ) (2.51)

with the corresponding set of differential equations

_Ui = �@Ehl

@Vi
=

X
j

wijVj + Ii �
X
�

��
@C�
@Vi

� Ui; (2.52)

_�� = +
@Ehl

@��
= C�(V ): (2.53)

In the literature, little attention has been paid to this model. We did not find an
analysis of the stability of the differential equations (2.52) and (2.53) anywhere.
In case of the Multiple TSP, six coupled differential equations had to be resolved,
whose stability properties were ‘in the process of investigating’ based on the Lya-
punov function (2.47). By numerical simulation using a first order Euler method,
good solutions have been found for certain small problem instances up to 20 cities
and 4 salesmen.

2.6 Elastic nets

The ‘elastic net’ [28] deals with a specific type of neural network, namely one for
solving the TSP. The elastic net algorithm (ENA) was derived from a hypothetical
‘tea trade model’ [59] for the establishment of topographically ordered, neighbor-
preserving projections13. The energy function to be minimized of the elastic net
equals:

Een(x) =
�2
2

mX
i=1

j xi+1 � xi j2 ��1
�

nX
p=1

ln
mX
j=1

exp(��
2

2 j xp � xj j2): (2.54)

Here, xi represents the i-th elastic net point or ‘bead’ and xp represents the loca-
tion of city p. The succeedingm elastic net points form a sort of elastic rubber ring,
that should be dragged along all n cities. The first term of Een equals the sum of
distance squares between succeeding net points (which, in a sufficient degree, cor-
responds to the tour length), while the second term enforces a match between each
city and one of the elastic net points. Application of gradient descent to equation
(2.54) yields, after a discretization step, the updating rule

�xi = �2
�
(xi+1 � 2xi + xi�1) + �1

X
p

�p(i)(xp � xi); (2.55)

13Making topology preserving maps is part of the ‘unsupervised learning’ approach of neural net-
works [44].



2.7 Computational results from the literature 35

where the time-step �t = 1=� equals the current temperature T and where �p(i)
is defined conform

�p(i) =
exp(��2

2 j xp � xi j2)P
l exp(��2

2 j xp � xl j2)
: (2.56)

The ENA has an important scaling property: the number of variables (i.e., the two-
dimensional net points) required is linear relative to the number of cities, while in
case of the Hopfield model the number of neurons needed is usually quadratic
relative to that number.

In practice, all xp are normalized to points in the unit square. The elastic net-
work is usually initialized in a small ring in the middle of that square. Taking
m = 2:5n, the following parameter values appear to be efficient [28]: �1 = 2:0
and �2 = 0:2. The initial value of the temperature T = 1=� is set to 0.2, and is
reduced by 1% every n iterations to a final value in the range 0.01-0.02. The gen-
eral effect of this lowering is that large-scale, global adjustments occur early on,
resulting in a general stretching out of the elastic net. This initial stretching out is
strongest to regions in the unit square having the highest concentration of cities.
Later on, smaller refinements occur corresponding to an increasingly local adap-
tation of the elastic net towards city points. Eventually, every city must be ‘vis-
ited’ by one bead. In [28, 44], a picture can be found of the gradual stretching out
of the elastic net. Up to several hundred cities, the ENA yields sub-optimal so-
lutions where the final tour-lengths exceed the optimal lengths by approximately
6% [78]. The results strongly depend on the chosen parameters and the algorithm
may end up in a non-valid state.

In 1990, two papers have been published on the relationship between elas-
tic and Hopfield neural nets. One paper [77] suggested statistical mechanics as
the common underlying framework, to which (in our view incorrect) analysis we
shall return extensively in chapter 6. There, we shall also take stock of the other
proposed common framework [90], namely that of ‘generalized deformable tem-
plates’. The ENA has also been modified in many ways in other to improve the
performance quality with respect to both the shortest tour found and the percent-
age of valid solutions encountered: see, e.g., [78, 31, 5, 22].

2.7 Computational results from the literature

Besides the afore-mentioned applications, many other achievements have been
gained in the field of (combinatorial) optimization and of association using Hop-
field type neural networks. We here give a notable but not exhaustive list of ex-
amples.

� The book of Takefuji [82] contains several practical problems which
have been tackled and resolved quite successfully using Hopfield
networks of various types, e.g., networks with alternative transfer
functions. Besides solutions of the n-queen and the k-colourability
problem, near-optimal solutions of ‘graph planarization’ and ‘channel
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routing’ problems (both important topics in designing printed circuit
boards) are presented. Furthermore, ‘RNA secondary structure pre-
diction’, ‘tiling’, ‘sorting and searching’, ‘broadcast scheduling’, and
various other problems are discussed including their computational
results.

� Neural computational results of the TSP and the WMP (section 2.2.2)
as well as solutions to the ‘graph bipartioning’ and to the ‘reconstruc-
tion of an image’ (from noisy or blurred data) can be found in the
textbook [44], with a lot of references belonging to them. In fact, in
the proceedings of any large recent international conference on neu-
ral networks, one often encounters an article containing a new attempt
to tackle the TSP. A recently encountered example is [24], which ap-
plies so-called ‘higher order’ neural networks and which appears to
be quite related to the analysis as given in chapter 4 of this thesis (see
the discussion at the end of section 4.3.3).

� Similarly, higher order neural networks were applied in the context of
process scheduling in flexible manufacturing systems [80]. Other ex-
amples of scheduling problems resolved by using Hopfield neural net-
works, can be found in [70, 81]. The first of these references describes,
among other things, neural solutions to the determination of a time-
table for teachers and classes in a high school, the second discusses a
neural solution to an assortment problem as found in the iron and steel
industry.

� In [55], two applications of Hopfield neural networks in the field of vi-
sion are given, the first one on ‘texture segmentation’ of images (where
the segmentation problem is formulated as an optimization problem),
the second one on ‘image restauration’ (from a recording which is de-
graded in one way or another). Comparisons to other methods are
given. Image restoration by Hopfield networks has become a popu-
lar area of research as it is, see e.g. , the proceedings of ICNN’95.

� Between other neural network applications in the area of high-speed
communication networks (where the ‘asynchronous transfer mode’
technology is the standard), ‘optimized routing’ and ‘optimal packet
scheduling in input queues’ by means of recurrent neural networks are
discussed in [65], including their hardware implementations.



Chapter 3

Unconstrained Hopfield
networks

In this chapter, we start trying to attain the first object of study as mentioned in
section 1.2.2. Most part of it is devoted to the study of the continuous Hopfield
model as introduced in section 2.3.2. We start offering an alternative derivation
of theorem 2.3 (on the mean field approximation of the stochastic model) yielding
some old and several new approximations of the free energy of the system. Next,
we analyze the properties of these approximations and their relation to the cor-
responding continuous model. In a third section, we generalize this continuous
model in two steps, eventually culminating in a very general framework. Finally,
we report the results of simulations that were set up in order to test some of the
theoretical conjectures.

Some parts of this chapter have been published earlier in [9, 14, 15, 17] or will
be published soon [11]. A large part has also been recorded in the technical reports
[13, 16].

3.1 The mean field approximation revisited

A mean field analysis of binary stochastic Hopfield networks was described in
chapter 2. Here, we shall deal with an alternative mean field analysis yielding
various approximations of the true free energy. These expressions will turn out
to be very useful later on. To reach our goal, we adopt (a slightly modified ver-
sion of) an approach given by Simic [77]. One difference between his and our ap-
proach concerns the way the external fields Ii are treated: he includes small ‘gen-
erating fields’ [76] in the expression of the partition function (2.2), which are set
to zero during the derivation. We use real external fields Ii, conform equation
(2.28), which remain in the formulas. Unlike Simic, we start analyzing the orig-
inal (unconstrained) binary Hopfield model.
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Theorem 3.1. If (wij ) is a symmetric matrix, then a mean field approximation of the free
energy of stochastic binary Hopfield networks can be stated as

Fu1(V ) = 1
2

X
i;j

wijViVj � 1
�

X
i

ln
�
1 + exp

�
�(
X
j

wijVj + Ii)
��
;

(3.1)

where the stationary points of Fu1 are found at points of the state space for which

8i : Vi = 1

1 + e��(
P

j
wijVj+Ii)

: (3.2)

Proof. The proof applies certain lemmas, whose precise formulation and demon-
stration can be found in the appendix D. As usual, the starting point of the sta-
tistical mechanical analysis is the partition function (2.2), where, in this case, the
Hamiltonian equals the energy of the binary Hopfield model as defined in (2.28).
Thus, we have

Zhu =
X
S

exp(�( 12

X
i;j

wijSiSj +
X
i

IiSi)): (3.3)

To be able to perform the summation in the partition function, the exponentials in
the quadratic terms SiSj are turned into exponentials that are linear in the Si’s by
using lemma 1 with the plus sign1. This yields

Zhu =
X
S

R
exp

h
��

2

P
i;j �iw

�1
ij �j + �

P
i Si(�i + Ii)

iQ
i d�iR

exp
h
��

2

P
i;j �iw

�1
ij �j

iQ
i d�i

; (3.4)

where the w�1ij ’s represent the elements of the matrix inverse of (wij) and where
the domain of integration of both (improper) integrals equals Rn . In analyses of
this kind, the integrals are often expanded around the point which maximizes
the integrand. The point is called the saddle point [44]. We shall apply this sad-
dle point approach in two ways. First, we calculate the saddle point for every
state S and then perform the summation over all states yielding the average h�̂i
of saddle points. This calculation can be done exactly. Second, we change the or-
der of these actions by starting with the summation and, after that, calculating the
(one and only) saddle point ~� of the summed quotients of integrals. This time, for
mathematical complications, a first-order approximation is applied.

By expanding, for every state, the integrand in the numerator and the inte-
grand in the denumerator of (3.4) around their respective saddle points, it is possi-
ble to recover formula (3.3). This follows in a straightforward way by the applica-
tion of lemma 2 (see also the note after the proof of that lemma). The saddle point
equation of the numerator of (3.4) leads to the formula

�̂i =
X
j

wijSj implying that h�̂ii =
X
j

wijhSji =
X
j

wijVj ; (3.5)

1In an aside, we note that the condition of symmetry of the matrix (wij) of lemma 1 coincides with
one of the conditions for theorem 2.1.



3.1 The mean field approximation revisited 39

where h�̂ii is the i-th component of the average of the saddle point values of (3.4)2.

Now we change the order. Summation over all 2n states S in (3.4) yields, using
lemma 3,

Zhu =

R
exp

h
��

2

P
ij �iw

�1
ij �j +

P
i ln
�
1 + exp(�(�i + Ii))

�iQ
i d�iR

exp
h
��

2

P
ij �iw

�1
ij �j

iQ
i d�i

:
(3.6)

Writing

Ehu(�; I) =
1
2

X
ij

�iw
�1
ij �j � 1

�

X
i

ln
�
1 + exp

�
�(�i + Ii)

��
; (3.7)

the saddle point ~� of the numerator in (3.6) is found by partial differentiation of
Ehu(�; I) to the �i’s, giving

~�i =
X
j

wij

1 + e��( ~�j+Ij)
: (3.8)

Up till now, the calculations have been exact. The question arises how h�̂i and
~� are related. Here, the (first order) saddle point approximation as applied in
lemma 4 turns out useful. Using this lemma, we find

Vi � �@Ehu(~�; I)

@Ii
=

1

1 + e��( ~�i+Ii)
: (3.9)

If we now substitute the approximation (3.9) in the exact formula (3.5), we obtain

h�̂ii �
X
j

wij

1 + e��( ~�j+Ij)
: (3.10)

Comparing (3.8) and (3.10), we conclude that

h�̂i � ~�: (3.11)

In the saddle point approximation of lemma 4, the partition function (3.6) has been
approximated according to

Zhu � exp(��Ehu(~�; I)): (3.12)

Using this, we can derive a saddle point approximation of the free energy of the
binary stochastic Hopfield model. The derivation goes like

Fhu = � 1

�
lnZhu � Ehu(~�; I) � Ehu(h�̂i; I) = Fu1(V ); (3.13)

2Apparently, h�̂ii represents the average internal input of neuron i.
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where the last equality is found by substitution of (3.5). The stationary points of
Fu1 are found by resolving the equations @Fu1=@Vi = 0. Again using the symme-
try of (wij), we precisely obtain (3.2) via

@Fu1
@Vi

=
X
j

wijVj � 1
�

X
k

� exp(�(
P

j wkjVj + Ik))wki

1 + exp(�(
P
j wkjVj + Ik))

=
X
k

wik(Vk � 1

1 + exp(��(Pj wkjVj + Ik))
) = 0: (3.14)

In fact, the equations (3.2) are mean field equations (see theorem 2.3 and equations
(2.24)). Apparently, the first order saddle point approximation and the mean field
approximation such as derived in section 2.1.5 are similar approaches yielding the
same results3. This observation completes the proof. ut

We may realize in another way that the first order saddle point and the mean
field approximation are approaches of the same kind. By combining (3.9), (3.11),
and (3.5), the saddle point approximation results in the mean field equations by
recognizing that

Vi � 1

1 + e��( ~�i+Ii)
� 1

1 + e��(h�̂ii+Ii)
=

1

1 + e��(
P

j
wijVj+Ii)

: (3.15)

Besides, we note that in the final result (3.1), the free energy Fu1 is written as a
function over V , that is, (just like in (2.9)) over an arbitrary probability distribu-
tion4. Comparing the original Hamiltonian (2.28) and the free energy approxima-
tion (3.1), it is remarkable that a sign flip in the quadratic expression of the Si’s has
occurred. Even more curious is the observation, that the sign flip can be undone
producing the mean field free energy expression (2.22):

Theorem 3.2. If (wij ) is a symmetric matrix, then a mean field approximation of the free
energy of stochastic binary Hopfield networks can also be stated as

Fu2(V ) = � 1
2

X
i;j

wijViVj �
X
i

IiVi +
1
�

X
i

�
Vi lnVi + (1� Vi) ln(1� Vi)

�
; (3.16)

where the stationary points of Fu2 coincide with those of Fu1.

Proof. Taking Ui = �
�P

j wijVj + Ii
�
, lemma 5 states:

ln
�
1 + exp

�
�(
X
j

wijVj + Ii)
��

=

�Vi lnVi � (1� Vi) ln(1� Vi) + �
�X

j

wijViVj + IiVi
�
: (3.17)

3We notice that the usual argument for the admissibility of the saddle point approximation is that
in the thermodynamic limit (that is for n!1), the integrals are extremely dominated by the contri-
butions which maximize the integrand [44, 76, 70]. We shall not further explore this here.

4Remember from section 2.1.5 that Vi can be interpreted as P (Si = 1).



3.2 Properties 41

By combining this result and equation (3.1), the expression (3.16) is found. The
stationary points are found by resolving

@Fu2
@Vi

= �
X
j

wijVj � Ii +
1
�
(ln Vi + 1� ln(1� Vi)� 1)

= 1
�
(��(

X
j

wijVj + Ii) + ln
Vi

1� Vi
) = 0: (3.18)

This yields the mean field equations (3.2). ut

3.2 Properties

3.2.1 The relation between Fu1 and Fu2

We have found two approximations of the free energy, namely Fu1 and Fu2. This
raises the question of how they are related. Let us start analyzing two simple ex-
amples. We take two binary stochastic Hopfield networks having the Hamilto-
nian

H1(S) = S2
1 � S1 and H2(S) = �S2

1 + S1: (3.19)

The first one is the most simple model of an anti-ferromagnetic system, the sec-
ond one of a ferromagnetic system (section 2.1.3). The corresponding free energy
functions are

Fu1;H1(V ) = �V 2
1 � 1

�
ln(1 + exp(�(�2V1 + 1))) (3.20)

Fu2;H1(V ) = V 2
1 � V1 +

1
�
(V1 lnV1 + (1� V1) ln(1� V1)) (3.21)

Fu1;H2(V ) = V 2
1 � 1

�
ln(1 + exp(�(2V1 � 1))) (3.22)

Fu2;H2(V ) = �V 2
1 + V1 +

1
�
(V1 lnV1 + (1� V1) ln(1� V1)): (3.23)

The figures 3.1 and 3.2 show the free energies Fu1 and Fu2 of H1, respectively H2,
for various values of �. In all cases, the stationary points of Fu1 and Fu2 coincide.

In the left-hand figure, the minima ofFu2;H1 coincide with maxima ofFu1;H1, all at
V1 = 0:5. Away from the stationary points, the free energy approximations differ
substantially, where the approximation Fu2;H1 looks the better one: H1 is a con-
vex function, so a free energy approximation is expected to be convex too since the
energy contribution of noise is convex (section 2.1.2). Moreover, � ! 1 (disap-
pearing noise) implies that 8V1 2 [0; 1] : Fu2;H1

! H1, while this limiting property
certainly does not hold for Fu1;H1.

In the right-hand figure, the free energy approximations are more similar while
the extrema of Fu1;H2 and Fu2;H2 have the same character. We also recognize
a phase transition: for high values of T = 1=�, there exists one minimum at
V1 = 0:5, while at lower temperatures, we see one (metastable) maximum and
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two (stable) minima, allowing the occurrence of a spontaneous magnetization. Al-
though Fu1 performs better now, the approximation by Fu2;H2 is still better: for
low values of �, the approximation Fu2;H2 near V1 = 0 or V1 = 1 is superior.

The indicated attributes concerning the type of the extrema can further be un-
derpinned by inspection of the second derivatives of Fu1 and Fu2. Denoting the
solutions of the mean field equations (3.2) by ~Vi, we find for the elements of the
respective Hessians at stationary points:

hu1;ij =
@2Fu1
@Vi@Vj

= wij � �
X
k

wikwkj
exp(�(

P
j wij

~Vj + Ii))

(1 + exp(��(Pj wkj
~Vj + Ik)))2

= wij � �
X
k

wikwkj ~Vk(1� ~Vk); (3.24)

hu2;ij =
@2Fu2
@Vi@Vj

=

� �wij if j 6= i

�wii + 1=(� ~Vi(1� ~Vi)) if j = i.
(3.25)

In the present example, in case of H1 (where w11 < 0), we find

8� : hu1 < 0 ^ hu2 > 0: (3.26)

This confirms the (opposite) character of the extrema in the left figure. In case of
H2 (where w11 > 0), we find

hu1 > 0 ^ hu2 > 0 if � < 1=(2 ~V1(1� ~V1)) = 2; (3.27)
hu1 < 0 ^ hu2 < 0 if � > 1=(2 ~V1(1� ~V1)) = 2: (3.28)

This confirms the (same) character of the extrema in the right figure. In the mean
time, we have calculated the critical temperature5 being Tcr = 1=�cr = 0:5. We

5In this case, the critical temperature can also be calculated by considering the equilibrium equa-
tions 2.34 [44]. They can be written as V1 = 1=(1+exp(��U1)) ^ V1 = 1

2
U1+

1
2

. For T > Tcr = 0:5,
the equations have only one solution V1 = 0:5. For T < Tcr = 0:5, there are 3 solutions.
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further notice that inspection of (3.24) and (3.25) reveals that the noted phenomena
concerning the character of the extrema of Fu1 and Fu2 may also occur in other
cases.

Concluding this section, we notice that in general the use of the superior mean
field approximation Fu2 is preferred. However, the approximation Fu1 will turn
out to be of great theoretical importance in section 3.3.1.

3.2.2 The effect of noise

There is still another way to understand the relationship between the mean field
approximation of the binary stochastic and the continuous Hopfield model. Here,
the starting point is Hopfield’s energy expression (2.32). Taking the sigmoid as the
transfer function, we can elaborate the Hopfield termEh, i.e., the sum of integralsP

i

R Vi
0 g�1(v)dv. Since Vi = g(Ui) = (1 + e��Ui)�1, we can write

Ui = � 1

�
ln(

1� Vi
Vi

) = g�1(Vi); (3.29)

and thereforeZ Vi

0

g�1(v)dv = 1
�
[(1� Vi) ln(1� Vi) + Vi lnVi] = � 1

�
S(Vi): (3.30)

Thus, we have proven the following theorem:

Theorem 3.3. If the sigmoid function is chosen as the transfer function in the continu-
ous Hopfield model, then the energy Ec equals the free energy approximation Fu2 of the
stochastic binary Hopfield model. The Hopfield termEh of the continuous model can phys-
ically be interpreted as the (approximation of the) thermal noise term � 1

�
S of (2.9).

For the specific choice of the sigmoid as the transfer function, we can exam-
ine the effect of the temperature more thoroughly (compare Hopfield’s discussion
as mentioned at the end of section 2.3.2). In figure 3.3, the term (3.30) is visual-
ized at various temperatures. The term is always non-positive and for � ! 1,
� 1
�
S(Vi) ! 0, so in the limit of an annealing process, the noise term does not in-

fluence the extrema of the original cost function E(V ) of (2.32). For finite values
of �, minima of E(V ) situated in a corner of the hypercube, are displaced toward
the interior (see also figure 3.4). This is true for any finite value of � since

@Eh

@Vi
(Vi = 0) = �1 and

@Eh

@Vi
(Vi = 1) =1; (3.31)

whereas the partial derivatives of E(V ) are always finite. The smaller � is, the
larger is the displacement toward the interior.

The displacement noted should be considered a pretty feature of the model.
First, it makes mean field annealing (section 2.1.5) possible, since the shift goes
hand in hand with a smoothing effect on the energy landscape ofE(V ) and gradu-
ally disappears ifT is lowered. Second, by keeping the final temperature small but
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positive, solutions are dragged away from corners of the hypercube [0; 1]n caus-
ing the corresponding U -values of the neurons to be finite. We further notice that
minima ofE(V ) situated in the interior of the hypercube are also displaced by the
effect of noise. The magnitude of the displacement strongly depends on the pa-
rameter value �.

In the literature, we occasionally encountered a slight confusion concerning
the Hopfield term Eh(V ). As we have seen, the term directly relates to the Ui-
terms in the corresponding updating rules (2.30): Ui = @Eh=@Vi. Takefuji consid-
ers the ‘decay term’ Ui ‘harmful’ and concludes (quote from pp. 6 and 7 in [82]):

“Hopfield gives the motion equation of the i-th neuron (Hopfield and Tank
1985):

dUi

dt
= �

Ui

�
�

@E

@Vi

(3.32)

( : : : ) . Wilson and Pawley strongly criticized the Hopfield and Tank neural
network through the Travelling Salesman Problem. Wilson and Pawley did
not know what causes the problem. The use of the decay term (�Ui=� ) in
Eq. 3.32 increases the computational energy functionE under some conditions
instead of decreasing it.”

So Takefuji suggests, but does not prove that the problems which Wilson and
Pawley [88] encountered, are caused by the decay term Ui=� (in our formulations
� = 1). We think this suggestion is not correct for two reasons. First, in his analy-
sis, Takefuji does not add the Hopfield term Eh(V ) to the energy function, but at
the same time, he does take up the decay term Ui in equation (3.32). He then con-
cludes, that the decay term is responsible for incrementing the cost functionE(V )
under some conditions, making it thereby harmful. In fact, this conclusion on the
increase of the cost function is correct, but it should not be considered harmful:
we shall prove in the next section that the encountered energy increase precisely
corresponds to the aforesaid displacement of solutions.
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Second, analyzing the TSP, Wilson and Pawley applied the penalty method with
many competing (sometimes called mutually ‘frustrating’) penalty terms: this
soft approach should be considered the crucial factor for the poor results in their
approach.

3.2.3 Why the decay term is not harmful

We already know from theorem 2.2, that under some general conditions, equation
(3.32) continuously decreases Ec(V ) = E(V ) + Eh(V ) until an equilibrium point
is reached. Takefuji argues in the following way that the cost function E(V ) alone
may increase: using equation (3.32) with � = 1, it is seen that

_E =
X
i

@E

@Vi
_Vi =

X
i

(� _Ui � Ui) _Vi

= �
X
i

( _U2
i + Ui _Ui)

dVi
dUi

: (3.33)

Because dVi=dUi > 0, a necessary condition for an increase of E(V ) can be stated
as follows: there should be at least one i such, that

_U2
i + Ui _Ui < 0; (3.34)

which is equivalent to

�Ui < _Ui < 0 or 0 < _Ui < �Ui: (3.35)

These two conditions correspond precisely to a displacement of a solution toward
the interior of the state space. We shall prove that the first condition results in a
displaced minimum with a lower value of Vi (the second corresponds to a displace-
ment with a higher value). The left inequality of �Ui < _Ui < 0 implies that

�Ui � _Ui < 0: (3.36)

Using again (3.32) with � = 1, one finds:

@E

@Vi
= �Ui � _Ui < 0; (3.37)

so that E as function of Vi is decreasing.
The right-hand inequality of �Ui < _Ui < 0 implies that � _Ui > 0. Using once

again (3.32) and the equation Ui = @Eh=@Vi, one finds:

@E

@Vi
+
@Eh

@Vi
=
@E

@Vi
+ Ui = � _Ui > 0; (3.38)

so that the sum of E and Eh is increasing. The inequalities (3.37) and (3.38) to-
gether imply

@Eh

@Vi
> 0; (3.39)
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so that Eh as a function of Vi is increasing. Therefore, Vi > 0:5. We have put this
altogether in figure 3.4 (for the case thatE has a minimum for Vi = 1). It should be
clear now that the conditions (3.37) to (3.39) imply a displacement of the minimum
of E(V ) to the interior, caused by the contribution of Eh(V ).

It is easy to prove that the converse also holds: a displacement of a solution
to a smaller value of Vi, caused by the Hopfield term, implies �Ui < _Ui < 0.
Summarizing, we conclude that the conditions (3.35) which may cause an increase
of the cost function E(V ), precisely correspond to a displacement of a solution to
the interior of the state space. Since we argued in the previous subsection that
such a displacement is a pretty feature of the model, the decay term is not at all a
harmful one.

3.3 Generalizing the model

3.3.1 A first generalization step

In this subsection, we introduce a more general view on Hopfield neural networks
which puts the analysis of section 3.1 in a wider context.

Theorem 3.4. If (wij ) is a symmetric matrix, then a mean field approximation of the free
energy of stochastic binary Hopfield networks can also be stated as

Fu3(U; V ) = � 1
2

X
i;j

wijViVj �
X
i

IiVi +
X
i

UiVi � 1
�

X
i

ln(1 + exp(�Ui)); (3.40)
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where the stationary points of Fu3 are found at points of the state space for which

8i : Vi = 1

1 + e��Ui
^ Ui =

X
j

wijVj + Ii: (3.41)

Proof. Substitution of lemma 5 in the energy function Fu2 of theorem 3.2 immedi-
ately yields the free energy expression (3.40). Resolving the system of equations
8i : @Fu3=@Ui = 0; @Fu3=@Vi = 0 (compare 3.14) yields the equations (3.41) as so-
lutions. ut

The most interesting point of theorem 3.4 is the fact that the stationary points of
Fu3 coincide with the complete set of equilibrium conditions (2.34), provided that
the sigmoid is the chosen transfer function. In fact, this clarifies (what may be
clear intuitively) that, for a full description of the (continuous) Hopfield network,
one should know both all input values (Ui) and all output values (Vi). Thus, it is
actually better to call the set of vectors fU; V g the system state of the neural net
(instead of merely the vector V ).

Just like Fu2 is a Lyapunov function, so Fu3 appears to be a Lyapunov function
of the motion equations (2.30):

Theorem 3.5. If (wij) is a symmetric matrix and if 8i : Vi = 1=(1+ exp(��Ui)) is the
transfer function, then the energy Fu3 is a Lyapunov function for the motion equations
(2.30).

Proof. Knowing that the sigmoid function is a monotone increasing and differen-
tiable function and that wij is a symmetric matrix, it follows that

_Fu3 =
X
i

@Fu3
@Vi

_Vi +
X
i

@Fu3
@Ui

_Ui (3.42)

=
X
i

��X
j

wijVj � Ii + Ui
�
_Vi +

X
i

�
Vi � 1

1 + e��Ui

�
_Ui (3.43)

= �
X
i

_Ui _Vi = �
X
i

( _Ui)
2 dVi
dUi

� 0: (3.44)

In section 3.2.2, it is shown that the solution values of Ui are finite for finite values
of �. Then, Fu3 is bounded below. Therefore, execution of the motion equations
(2.30) constantly decreases the value ofFu3 until 8i : _Ui = 0 and a (local) minimum
has been reached. ut

Inspection of the proof immediately yields a well-known [44], complementary set
of motion equations for which Fu3 or �Fu3 might be a Lyapunov function:

Theorem 3.6. If the matrix (wij) is symmetric and positive definite, then Fu3 or alter-
natively, if the matrix (wij) is symmetric and negative definite, then�Fu3 is a Lyapunov
function for the motion equations

_Vi =
1

1 + e��Ui
� Vi; (3.45)
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where

Ui =
X
j

wijVj + Ii: (3.46)

Proof. The proof again considers the time derivative of Fu3. If (wij) is positive
definite, then

_Fu3 = �
X
i

_Vi _Ui = �
X
i

_Vi
X
j

@Ui
@Vj

_Vj = �
X
i

_Vi
X
j

wij _Vj � 0:
(3.47)

If (wij ) is negative definite, then� _Fu3 � 0. In both cases, updating conform (3.45)
decreases the corresponding Lyapunov function until, finally, 8i : _Vi = 0. ut

3.3.2 A more general framework

Since equations (3.41) are a special case of (2.34) and similarly, equation (3.16) is a
special case of (2.32), the question arises whether theorem 3.4 can be generalized
to an energy expression of a continuous Hopfield network having neurons with
an arbitrary6 transfer function of the form Vi = g(Ui). The following two theorems
answer this, and other questions, affirmatively.

Theorem 3.7. If (wij) is a symmetric matrix, then any stationary point of the energy Fgf
defined by

Fgf(U; V ) = � 1
2

X
i;j

wijViVj �
X
i

IiVi +
X
i

UiVi �
X
i

Z Ui

0

g(u)du (3.48)

coincides with an equilibrium state of the continuous Hopfield neural network.

Proof. Resolving

8i : @Fgf=@Ui = 0 ^ @Fgf=@Vi = 0; (3.49)

the set of equilibrium conditions (2.34) is immediately found. ut

In fact, the energy expression (3.48) can simply be derived from Hopfield’s origi-
nal expression (2.32) using partial integration. Having Vi = g(Ui), we can write

X
i

Z Vi

0

g�1(v)dv =
X
i

�
g�1(v)v

�Vi
0
�
X
i

Z Ui

g�1(0)

vdu

=
X
i

UiVi �
X
i

Z Ui

0

g(u)du+ c; (3.50)

6In fact, Vi = g(Ui) is not completely arbitrary, since, for mathematical reasons, one should im-
pose one or more general restrictions. E.g., g(Ui) may have to be continuous, differentiable and-or
integrable. To keep things simple, we mention these restrictions explicitly so far as they are of special
interest. In other cases, the precise conditions are omitted and supposed to hold implicitly.
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where c = �Pi

R 0
g�1(0)

g(u)du is an unimportant constant which may be ne-
glected7. Substitution of the result in (2.32) yields (3.48).

Theorem 3.8. If (wij) is a symmetric matrix and if 8i : Vi = g(Ui) is a differentiable
and monotone increasing function, then the energy function Fgf is a Lyapunov function
for the motion equations

_Ui =
X
j

wijVj + Ii � Ui; where Vi = g(Ui): (3.51)

Proof. The proof is a direct generalization of the proof of theorem 3.5. ut

Theorem 3.9. If the matrix (wij) is symmetric and positive definite, then Fgf or alter-
natively, if the matrix (wij ) is symmetric and negative definite, then�Fgf is a Lyapunov
function for the motion equations

_Vi = g(Ui)� Vi; where Ui =
X
j

wijVj + Ii: (3.52)

Proof. The proof is a direct generalization of the proof of theorem 3.6. ut

It is interesting to see that the conditions for which the updating rules (3.51) and
(3.52) guarantee stability are so different. In the first case, stability only depends
on the transfer function chosen. The corresponding condition that Vi = g(Ui)
should be differentiable and monotone increasing is generally easy to check. In
the second case, stability depends on the structure of the optimization problem
involved. The corresponding condition that the matrix (wij) should be positive
or negative definite, may be difficult to check. The motion equations (3.51) are
therefore in practice the preferable choice.

3.4 Computational results

We already discussed the fact that, in principle, the unconstrained continuous
Hopfield model can be used to solve combinatorial optimization problems. The
approach required is the soft one applying penalty terms. However, the compu-
tational results as known from literature are often very poor (section 2.4). On the
other hand, we noticed in footnote 11 of the previous chapter that the penalty
method may be useful for solving purely combinatorial problems. For this rea-
son, we first confine ourselves to report certain experimental results involving one
of such problems, namely the n-rook problem8. By doing this, we can simulta-
neously check some of the theoretical statements of this chapter, especially con-
cerning the role of the temperature parameter. Secondly, we shall dwell upon the
outcomes of a simple problem which is resolved using mean field annealing.

7It is not difficult to see that g(0) = 0) c = 0.
8In addition, this problem acts as an introduction to the TSP, the experimental outcomes of which

– together with those of other problems – will be reported in the next chapters.
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3.4.1 The n-rook problem

The n-rook problem (NRP), which is strongly related to the famous n-queen prob-
lem, can be stated as follows: given an n � n chess-board the goal is to place n
non-attacking rooks on the board. The problem is the same as the ‘crossbar switch
scheduling’ problem, where the throughput of packets should be controlled in
such a way that at any time, no two inputs may be connected to the same output
and, vice versa, no output may be connected to more than one input simultane-
ously9. We may map the problem on the continuous Hopfield network as follows:
if Vij represents whether a rook is placed on the square of the chess-board with
row number i and column number j, we search for a combination of Vij -values
such that the following constraints are fulfilled:

C1 =
X
i;j

X
k>j

VijVik = 0; (3.53)

C2 =
X
j;i

X
k>i

VijVkj = 0; (3.54)

C3 = 1
2 (
X
i;j

Vij � n)2 = 0: (3.55)

C1 = 0 implies that in any row at most one Vik 6= 0, C2 = 0 implies that in any
column at most one Vkj 6= 0. C3 = 0 in combination with C1 = C2 = 0 implies
that precisely n rooks are placed on the board. The constraints fulfill the condi-
tion (2.37). C1; C2; C3 can thus be used as penalty terms. The cost function to be
minimized becomes

Fu;nr(V ) =

3X
�=1

c�C�(V ) +Eh(V ): (3.56)

The corresponding motion equation of this problem is

_Uij = �@Fu;nr
@Vij

= �c1
X
k 6=j

Vik � c2
X
k 6=i

Vkj � c3(
X
i;j

Vij � n)� Uij ; (3.57)

where Vij = 1=(1 + exp(��Uij)). We note that in this problem the matrix (wij;kl)
is symmetric so that (3.57) is expected to be stable. In the numerical simulation,
we apply the approximation

_Uij � �Uij=�t: (3.58)

Using random initializations of Vij around 0.5, and choosing 8� : c� = 1, con-
vergence is always present, provided �t is chosen to be small enough. In case of
n = 4, �t = 0:01 is a good choice. At low temperatures, most of the neurons ap-
proach zero, while four of them become approximately one. In fact, one of the
24 possible solutions is ever found. The four neuron values which have become
approximately one, are all equal and depend on �:

9As we shall see later on, the problem is also strongly related to the TSP. It has been resolved by
Takefuji [82] too, although he applied another neural network. See further also [65].
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� Vij � 1
1000 0.998392

200 0.993678
20 0.960207

Table 3.1: Solution values Vij � 1 as function of �, in case n = 4.

At high temperatures however, all 16 Vij ’s become equal. E.g., for � = 0:0002
keeping the other parameters the same, we found 8i; j : Vij = 0:499650. The effect
of a high noise level is present now.

In case of n = 25, � = 1000,�t = 0:0001, we again found convergence, namely
to one of the 25!, i.e. to one of the approximately 1:55� 1025 solutions. In case of
n = 50 and other parameters as before, we found convergence to one of the ap-
proximately 3:04� 1064 solutions. ‘Even’ taking n = 100 with �t = 0:00005 , the
system turns out to be stable. However, the calculation time now becomes an is-
sue (several hours), since the neural network involved consists of 10 000 neurons,
which have to be sequentially updated in the simulation for several thousand of
times.

3.4.2 Mean field annealing

We finish this chapter by showing how the addition of noise can help to find the
global minimum of a function. We look for the minimum of the Hamiltonian

Emf(V ) = �V 2
1 + 1:5V1; (3.59)

where V1 2 [0; 1]. The global boundary minimum of Emf is the point (0,0), while
(1,0.5) is the other (local) boundary minimum. Direct application of gradient de-
scent onEmf(V )with random initialization of V1 on the interval (0.0,1.0) yields the
global minimum in 75% of the cases, namely, if V1 2 (0:0; 0:75). However, in 25%
of the cases, namely, if V1 2 (0:75; 1:0), the local boundary minimum is found.

If we apply mean field annealing by adding a sufficient amount of noise in the
beginning, the global solution is always found. Figure (3.5) demonstrates how this
can happen: at high temperatures (low values of �), the minimum of the free en-
ergy

Fmf(V ) = Emf(V ) +Eh(V ) (3.60)

occurs slightly left of V1 = 0:5. On lowering the temperature, this minimum is
gradually displaced and finally appears in the stateV1 = 0, while at the same time,
the free energy Fmf more and more approximates the original Emf . Even if the
initial value of V1 is in the interval (0.75,1.0), the right solution will still be found.
A simulation using the corresponding motion equation

_U1 = �@Fmf

@V1
= 2V1 � 1:5� U1; (3.61)
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Figure 3.5: Fmf for various values of �.

(where as usual, V1 = 1=(1 + exp(��U1))), confirms this conjecture: e.g., having
� = 0:5 and V = 0:977 initially, the network immediately relaxes to the equilib-
rium point at that temperature: we found (0.418,-0.907). On lowering the temper-
ature step by step, the network continually relaxes to the new equilibrium point,
which is gradually displaced towards the final limit point (0.0,0.0).

As has been pointed out in chapter 1, matters are usually much more compli-
cated when real practical problems are tackled. E.g., problem instances of prac-
tical interest generally have energy functions in a high-dimensional space with
many local minima widely scattered around, which gradually appear after each
other on lowering the temperature. Thus, in those cases, the precise effect of the
temperature is not quite clear and it is strongly connected to the actual structure
of the energy surface of the problem.



Chapter 4

Constrained Hopfield
networks

We take up the strong approach of dealing with the constraints as mentioned in
section 2.4: the constraints are built-in in the neural network. Surprisingly, the se-
lected constrained binary stochastic Hopfield neural network can be analyzed in
a similar way as the unconstrained network of the previous chapter1. It leads to
the insight that this constrained model also coincides, in mean field approxima-
tion, with an (adapted) continuous Hopfield net. Having elucidated this, we gen-
eralize the encountered free energy expressions: in three steps, the most general
framework of continuous Hopfield models will emerge. As usual, we conclude
by reporting some experimental results.

This chapter is largely structured like the previous one. Parts of this chapter
have been published earlier in [9, 15, 17] or will be published soon [11]. A consid-
erable part has been recorded in the technical reports [13, 16].

4.1 Once again, the mean field approximation

We restrict the space of allowed states of the neural net by imposing the constraint
(2.40), that is, we impose X

i

Si � 1 = 0: (4.1)

Thus, only such states are admitted where exactly one of the neurons is on, all the
others being off. The original state space f0; 1gn is reduced to a much smaller one
having the admissible n states (1; 0; 0; : : : ; 0); (0; 1; 0; : : : ; 0); : : : ; (0; 0; 0; : : : ; 1). In
order to analyze this constrained neural network, we again adopt the modified
version of Simic’s approach [77].

1In fact, the research efforts which induced the (more difficult) analysis given here, for the greater
part preceded those concerning the unconstrained networks.
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Theorem 4.1. If (wij ) is a symmetric matrix, then a mean field approximation of the free
energy of stochastic binary Hopfield networks submitted to the constraint (4.1) can be
stated as

Fc1(V ) = 1
2

X
i;j

wijViVj � 1
�
ln
�X

i

exp(�(
X
j

wijVj + Ii))
�
; (4.2)

where the stationary points of Fc1 are found at points of the state space for which

8i : Vi =
exp(�(

P
j wijVj + Ii))P

l exp(�(
P

j wljVj + Il))
: (4.3)

Proof. The proof follows the scheme of the proof of theorem 3.1. This time, we
shall indicate the partition function byZhc. Up to and including the exact equation
(3.5), the proof is precisely the same. Thereupon, summation over the n states of
the constrained space using lemma 6 yields,

Zhc =

R
exp

h
��

2

P
i;j �iw

�1
ij �j + ln

P
i exp(�(�i + Ii))

iQ
i d�iR

exp
h
��

2

P
i;j �iw

�1
ij �j

iQ
i d�i

:
(4.4)

Writing

Ehc(�; I) =
1
2

X
ij

�iw
�1
ij �j � 1

�
ln
X
i

exp(�(�i + Ii)); (4.5)

partial differentiation of Ehc(�; I) this time leads to the saddle point equation

~�i =
X
j

wij
exp(�( ~�i + Ii))P
l exp(�(

~�l + Il))
: (4.6)

Up till now, the calculations have been exact. The question arises, whether h�̂i
and ~� are again related conform a saddle point approximation. Applying a mod-
ified, but very similar version of lemma 4, we arrive at the following saddle point
approximation:

Vi � �@Ehc(~�; I)

@Ii
=

exp(�(~�i + Ii))P
l exp(�(

~�l + Il))
: (4.7)

If we now substitute the approximation (4.7) in the exact formula (3.5), we indeed
obtain (3.11), which states that in a saddle point approximation h�̂i � ~�. We fur-
ther realize that again equation (3.12) holds and that it leads to (4.2) conform

Fhc = � 1

�
lnZhc � Ehc(~�; I) � Ehc(h�̂i; I) = Fc1(V ); (4.8)
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where the last equality is obtained by substitution of (3.5). Using the symmetry of
wij , we finally find the equations (4.3) via

@Fc1
@Vi

=
X
j

wijVj � 1
�

X
k

� exp(�(
P
j wkjVj + Ik))wkiP

l exp(�(
P
j wljVj + Il))

=
X
k

wik(Vk �
exp(�(

P
j wkjVj + Ik))P

l exp(�(
P

j wljVj + Il))
) = 0: (4.9)

These equations are the mean field equations of the constrained neural network
[69, 70, 78]. Apparently, the first order saddle point approximation and the mean
field analysis again yield the same results. This completes the proof. ut

We may realize in another way that the first order saddle point and the mean field
approximation are approaches of the same kind. By combining (4.7), (3.11), and
(3.5), the saddle point approximation results into the mean field equations by re-
alizing that

Vi � exp(�(~�i + Ii))P
l exp(�(

~�l + Il))

� exp(�(h�̂ii+ Ii))P
l exp(�(h�̂li+ Il))

=
exp(�(

P
j wijVj + Ii))P

l exp(�(
P

j wljVj + Il))
: (4.10)

The sign flip (in the quadratic expression of the Si’s) we mentioned in the previous
chapter is present again. Likewise, it can be undone producing a new free energy
expression. This is stated more precisely in the following theorem, where the con-
strained subspace C is defined as the subspace of the state space [0; 1]n for whichP

i Vi = 1.

Theorem 4.2. If (wij) is a symmetric matrix, then a mean field approximation of the free
energy of stochastic binary Hopfield networks submitted to the constraint (4.1) can also
be stated as

Fc2(V ) = � 1
2

X
i;j

wijViVj �
X
i

IiVi +
1
�

X
i

Vi lnVi; (4.11)

where the stationary points of Fc2, considered as a function over the constrained
space C, coincide with the (global) stationary points of Fc1.

Proof. Taking Ui =
P
j wijVj + Ii, lemma 7 states:

ln
X
i

exp(�(
X
j

wijVj + Ii)) =

�
X
i

Vi lnVi + �(
X
ij

wijViVj +
X
i

IiVi): (4.12)
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By combining this result and equation (4.2), the expression (4.11) for Fc2(V ) is
found. In order to find the constrained stationary points of Fc2, a Lagrange mul-
tiplier term is added to (4.11) giving

Lc2(V; �) = � 1
2

X
i;j

wijViVj �
X
i

IiVi +
1
�

X
i

Vi lnVi + �(
X
i

Vi � 1): (4.13)

The stationary points of Lc2 are found by resolving the following set of equations
(4.14) and (4.15):

@Lc2

@Vi
= �

X
j

wijVj � Ii +
1
�
(1 + lnVi) + � = 0; i = 1; : : : ; n; (4.14)

@Lc2

@�
=

X
i

Vi � 1 = 0: (4.15)

From (4.14) it follows that

Vk
Vi

=
exp(

P
j wkjVj + Ik)

exp(
P

j wijVk + Ii)
: (4.16)

Combining this result with (4.15), we obtain

1 =
X
k

Vk = Vi

P
k exp(

P
j wkjVj + Ik)

exp(
P
j wijVk + Ii)

: (4.17)

This equation implies the mean field equations (4.3). The solutions of these equa-
tions are stationary points of Lc2 and constrained stationary points of Fc2 as well.
This completes the proof. ut

It should be clear that a replacement of wij by�wij and of Ii by�Ii slightly mod-
ifies the above given theorems yielding mean field equations of the type

Vi =
exp(��(Pj wijVj + Ii))P
l exp(��(

P
j wljVj + Il))

: (4.18)

4.2 Properties

4.2.1 The relation between Fc1 and Fc2

As in the unconstrained case, we have found two approximations of the free en-
ergy, namely Fc1 and Fc2. We again want to understand how they are related. We
start with an example. Suppose the function to be minimized is

H3(S) =
1
2 (S

2
1 + 2S2

2) subject to S1 + S2 = 1; (4.19)

then the corresponding free energy expressions (from theorems 4.1 and 4.2) equal

Fc1;H3(V1; V2) = � 1
2 (V

2
1 + 2V 2

2 )� 1
�
ln[exp(��V1) + exp(�2�V2)]; (4.20)

Fc2;H3(V1; V2) = 1
2 (V

2
1 + 2V 2

2 ) +
1
�
(V1 lnV1 + V2 lnV2): (4.21)
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Figure 4.1: The free energy Fc1;H3.
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Figure 4.2: The free energy Fc2;H3.

A diagram of these functions is shown in the figures 4.1 and 4.2, with � = 20,
which corresponds to a low noise level. The arrow denotes the point (23 ;

1
3 ;

1
3 )

which is the global maximum of Fc1;H3, respectively the constrained minimum of
Fc2;H3, if noise is neglected. In this example, the constrained subspace C consists
of the subspace of [0; 1]2 for which V1 + V2 = 1. In figure 4.3, Fc1;H3 and Fc2;H3

are shown over this constrained subspace. We notice the same phenomenon like
in section 3.2 concerning the Hamiltonian E1: Fc1;H3 and Fc2;H3 have coinciding
stationary points with an opposite character of the extrema.
Likewise, analyzing the Hamiltonian

H4(S) = � 1
2 (S

2
1 + 2S2

2) subject to S1 + S2 = 1; (4.22)

we found thatFc1;H4 andFc2;H4 have extrema of the same kind. This is not further
elaborated here.

Concluding this subsection, we observe that, within the constrained space C,
Fc1 and Fc2 seem to behave in the same way as Fu1 and Fu2 in the unconstrained
case.

4.2.2 The effect of noise

The resemblance of the constrained Hopfield network to the unconstrained one
reaches even further. The free energy Fc2 can be interpreted as a function over a
probability distribution V , where in this case

Vi = hSii = P(Si = 1 ^ 8j 6= i : Sj = 0): (4.23)

A closer investigation reveals that Fc2, like Fu2, is structured conform the gen-
eral free expression (2.9). However, contrary to what we concluded in the un-
constrained case, the neurons now have a mutually dependent contribution (of
1
�
Vi lnVi) to the entropy term. At high temperatures, the thermal noise energy
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Figure 4.3: The energy expressions Fc1;H3 and Fc2;H3

in the constrained space C.

dominates, this time yielding the constrained equilibrium solution 8i : Vi = 1=n.
This is easily recognized by resolving (using Lagrange’s multiplier method)

minimize 1
�

P
i Vi lnVi;

subject to :
P
i Vi � 1 = 0: (4.24)

Lowering the temperature corresponds to a decrease of thermal noise in the sys-
tem and the details of the original cost function become visible. Therefore, mean
field annealing can be applied.

4.3 Generalizing the model

4.3.1 A first generalization step

In this subsection, we introduce a general view on the binary constrained Hopfield
model which puts the analysis of section 4.1 in a wider context. It will also enable
us to analyze the stability properties of the constrained model.

Comparing the unconstrained and the constrained binary stochastic Hopfield
model, the question may be posed whether the free energy approximation Fc2 co-
incides with the energy of the continuous Hopfield model with the transfer func-
tion

Vi = gi(U) =
exp(�Ui)P
l exp(�Ul)

: (4.25)

This transfer function is (of course) induced by the mean field equations (4.3). The
corresponding continuous Hopfield network is visualized in figure 4.4. It is im-
portant to notice that the expression (4.11) for Fc2 is not a special case of the gen-
eral energy expression Ec (2.32) of the original continuous Hopfield model. This
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Figure 4.4: The constrained Hopfield network with equilibrium condition:
8i : Ui =

P
j wijVj + Ii and Vi = exp(Ui)=

P
l exp(Ul).

follows from the observation thatX
i

Z Vi

0

g�1i (v)dv (4.26)

is not properly defined here, since Vi = gi(U) is now a function of U1; U2; : : : ; Un
and not of Ui alone. Apparently, we have introduced a new, adapted continuous
Hopfield network. The relation between this network and its stochastic counter-
part is given by the following theorem.

Theorem 4.3. If (wij) is a symmetric matrix, then a mean field approximation of the free
energy of stochastic binary Hopfield networks submitted to the constraint (4.1) can also
be stated as

Fc3(U; V ) = � 1
2

X
i;j

wijViVj �
X
i

IiVi +
X
i

ViUi � 1
�
ln(
X
i

exp(�Ui)); (4.27)

where the stationary points of Fc3 are found at points of the state space for which

8i : Vi = exp(�Ui)P
l exp(�Ul)

^ Ui =
X
j

wijVj + Ii: (4.28)

Proof. Substitution of lemma 7 (in its original form) in the energy function Fc2 of
theorem 4.2 immediately yields expressionFc3. Resolving the system of equations
8i : @Fc3=@Ui = 0; @Fc3=@Vi = 0 yields the equations (4.28) as solutions. ut

Again, we encounter the interesting phenomenon that the stationary points of
a free energy approximation of a stochastic model coincide with the conditions
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of equilibrium of a continuous Hopfield network. From the analysis presented
above it also follows that, in the constrained case, Hopfield’s theorem 2.2 does not
hold. This induces the question whether, and if so, under which conditions, the
adapted continuous Hopfield model converges. The following theorem answers
this question.

Theorem 4.4. If (wij) is a symmetric matrix, if (4.25) is used as the transfer function,
and if, during updating, the Jacobian matrix Jg = (@Vi=@Uj) first is or becomes and
then remains positive definite, then the energy Fc3 is a Lyapunov function for the motion
equations (2.30).

Proof. Assuming that the conditions of the theorem hold we may say that in the
long run

_Fc3 =
X
i

@Fc3
@Vi

_Vi +
X
i

@Fc3
@Ui

_Ui

=
X
i

(�
X
j

wijVj � Ii + Ui) _Vi +
X
i

(Vi � exp(�Ui)P
l exp(�Ul)

) _Ui

= �
X
i

_Ui
X
j

@Vi
@Uj

_Uj = � _UTJg _U � 0: (4.29)

SinceFc3 is bounded below at finite temperatures (for similar reasons as explained
in the unconstrained case), its value decreases constantly until 8i : _Ui = 0 and a
local minimum is reached. ut

Whether the general condition holds that the matrix Jg will become and remain
positive definite, is not easy to say. Applying lemma 8, the symmetric matrix Jg
is given by

�

0
BBB@

V1(1� V1) �V1V2 � � � �V1Vn
�V2V1 V2(1� V2) � � � �V2Vn

...
...

...
�VnV1 �VnV2 � � � Vn(1� Vn)

1
CCCA : (4.30)

So we see that all diagonal elements of Jg are positive, while all non-diagonal ele-
ments are negative. Knowing that

P
i Vi = 1, we argue that for large n in general

8i;8j;8k : ViVj << Vk(1� Vk); (4.31)

although this statement is certainly not always true. Nevertheless, it is not unrea-
sonable to expect that in many cases, the matrix Jg is dominated by the (positive)
diagonal elements, making it positive definite2. For these reasons, it is conjectured
that the motion equations (2.30) turn out to be stable in many practical applica-
tions.

2Under the given conditions, the symmetric matrix Jg has only positive eigenvalues, implying the
definite positiveness of it [66].
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As in the unconstrained case, inspection of the proof of the previous theorem im-
mediately yields a complementary set of motion equations for which Fc3 may be
a Lyapunov function:

Theorem 4.5. If the matrix (wij) is symmetric and positive definite, then Fc3 or alter-
natively, if the matrix (wij) is symmetric and negative definite, then�Fc3 is a Lyapunov
function for the motion equations

_Vi =
exp(�Ui)P
l exp(�Ul)

� Vi; (4.32)

where

Ui =
X
j

wijVj + Ii: (4.33)

Proof. The proof is the same as the proof of theorem 3.6. ut

4.3.2 A very general framework

It is remarkable, that the motion equations (2.30) of the continuous unconstrained
model may still be applied using the constrained model, where the concrete trans-
fer function (4.25) is a function of all inputs Ui. This poses the question whether
those motion equations can still be applied if an arbitrary3 function of the form
Vi = gi(U) = gi(U1; U2; : : : ; Un) is used. This would yield a further generaliza-
tion of (2.32), of section 3.3.2, and of the previous section. The following theorems
answer this question.

Theorem 4.6. Let G(U) = G(U1; U2; : : : ; Un) be a function for which

8i : @G(U)
@Ui

= gi(U): (4.34)

If (wij) is a symmetric matrix, then any stationary point of the energy

Fvgf(U; V ) = � 1
2

X
i;j

wijViVj �
X
i

IiVi +
X
i

UiVi �G(U) (4.35)

coincides with an equilibrium state of the continuous Hopfield neural network defined by4

8i : Vi = gi(U) ^ Ui =
X
j

wijVj + Ii: (4.36)

Proof. Resolving

8i : @Fvgf=@Ui = 0 ^ @Fvgf=@Vi = 0; (4.37)

the set of equilibrium conditions (4.36) is found. ut

3Again, certain general restrictions should be imposed on the transfer function: see footnote 6 of
the previous chapter.

4Note, that the set of equilibrium conditions (4.36) is indeed a generalization of the set (2.34).
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Theorem 4.7. If the matrix (wij) is symmetric and if, during updating, the Jacobian ma-
trix Jg first is or becomes and then remains positive definite, then the energy function Fvgf
is a Lyapunov function for the motion equations

_Ui =
X
j

wijVj + Ii � Ui; where Vi = gi(U): (4.38)

Proof. The proof is a direct generalization of the proof of theorem 4.4. ut

Theorem 4.8. If the matrix (wij) is symmetric and positive definite, then Fvgf or alter-
natively, if the matrix (wij) is symmetric and negative definite, then�Fvgf is a Lyapunov
function for the motion equations

_Vi = gi(U)� Vi; where Ui =
X
j

wijVj + Ii: (4.39)

Proof. The proof is a direct generalization of the proof of theorem 4.5. ut

The conditions for which the updating rules (4.36) and (4.39) guarantee stability
are quite different. Compared to the general framework of the unconstrained net-
work (section 3.3.2), the condition on the transfer function (theorems 3.8 and 4.7)
has become more difficult to check. On the other hand, the condition on the ma-
trix (wij) (theorems 3.9 and 4.8) has remained the same and, often unfortunately
hard to check.

4.3.3 The most general framework

We now ask ourselves whether the expressionUi =
P
j wijVj+Ii can also be gen-

eralized, namely, to an arbitrary ‘summation function’ of type Ui = hi(V ) (where
an external input Ii is still admitted), and whether we can still give conditions that
guarantee stability. Since we have done all the preparatory work, the affirmative
answers to these questions are surprisingly simple. The result is what we have
termed the ‘most general framework of continuous Hopfield models’.

Theorem 4.9. Let G(U) be function defined like in theorem 4.6 and let in the same way
H(V ) = H(V1; V2; : : : ; Vn) be a function for which

8i : @H(V )

@Vi
= hi(V ): (4.40)

Then any stationary point of the energy

Fmgf(U; V ) = �H(V ) +
X
i

UiVi �G(U) (4.41)

coincides with an equilibrium state of the continuous Hopfield neural network defined by

8i : Vi = gi(U) ^ Ui = hi(V ) (4.42)
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Proof. Resolving

8i : @Fmgf=@Ui = 0 ^ @Fmgf=@Vi = 0; (4.43)

the set of equilibrium conditions (4.42) is found. ut

V1g1
U1

h1

I1

V2g2
U2

h2

I2

Vngn
Un

hn

In

r

r

r

r

r

r

r

r

r
r

r

r

Figure 4.5: The most general continuous Hopfield network with equilibrium
condition: 8i : Ui = hi(V ) and Vi = gi(U).

Theorem 4.10. Suppose that Fmgf(U; V ) is bounded below. Then the following state-
ments hold:
(a) If, during updating, the Jacobian matrix Jg = (@Vi=@Uj) first is or becomes and then
remains positive definite, then the energy function Fmgf is a Lyapunov function for the
motion equations

_Ui = hi(V )� Ui; where Vi = gi(U): (4.44)

(b) If, during updating, the Jacobian matrix Jh = (@Ui=@Vj) first is or becomes and then
remains positive definite, then the energy function Fmgf is a Lyapunov function for the
motion equations

_Vi = gi(U)� Vi; where Ui = hi(V ): (4.45)

(c) If, during updating, the Jacobian matrices Jg and Jh first are or become and then re-
main positive definite, then the energy function Fmgf is a Lyapunov function for the mo-
tion equations

_Ui = hi(V )� Ui ^ _Vi = gi(U)� Vi: (4.46)
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Proof. Assuming that the conditions as mentioned in (c) hold, we obtain

_Fmgf =
X
i

@Fmgf

@Vi
_Vi +

X
i

@Fmgf

@Ui
_Ui

=
X
i

(�hi(V ) + Ui)
X
j

@Vi
@Uj

_Uj +
X
i

(Vi � gi(U))
X
j

@Ui
@Vj

_Vj

= �
X
i

_Ui
X
j

@Vi
@Uj

_Uj �
X
i

_Vi
X
j

@Ui
@Vj

_Vj

= � _UTJg _U � _V TJh _V � 0: (4.47)

Then, the boundedness of Fmgf is sufficient to guarantee stability where at equi-
librium 8i : _Ui = _Vi = 0 implying the general equilibrium condition

8i : Ui = hi(V ) ^ Vi = gi(U): (4.48)

Using (4.47), the proofs of (a) and (b) can be done in the same way as the proof of
theorem 4.4. ut

Contemplating the results of this section, several striking observations emerge:

� By choosing appropriate transfer functions gi(U), several different types of
constraints C�(V ) can be incorporated in continuous Hopfield networks.
If they are chosen in such a way that the Jacobian matrix Jg first is or be-
comes and then remains positive definite, stability of the differential equa-
tions (4.44) is generally guaranteed. Alternatively, stability can be forced by
choosing appropriate summation functions hi(V )while at the same time ap-
plying motion equations (4.45).

� By choosing appropriate summation functions hi(V ), ‘arbitrary’ energy ex-
pressions H(V ) (not merely quadratic ones!) can be modelled by general-
ized continuous Hopfield networks. If they are chosen in such a way that
the Jacobian matrix Jh first is or becomes and then remains positive definite,
stability of the differential equations (4.45) is generally guaranteed. Alter-
natively, stability can be forced by choosing appropriate transfer functions
gi(U) while at the same time applying motion equations (4.44).

� Taking the purely mathematical point of view, it is clear that the transfer
functions gi(U) and the summation functions hi(V ) are completely inter-
changeable.

An important consequence of these observations is the fact that within the intro-
duced generalization, much more freedom exists for configuring continuous Hop-
field neural networks. On the one hand, modelling an energy expression H(V ) is
rather simple, since the corresponding summation functions (which should im-
plement the desired energy expression H(V )) can be found by simply taking the
corresponding partial derivatives hi(V ) = @H(V )=@Vi. It is interesting to note
that, very recently, we came across two examples of this approach. In [24], ‘higher
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order neural networks’ are introduced and appear to represent a much stronger
heuristic to solving the Ising spin (checkerboard pattern) problem than that which
is implemented by the Hopfield network. In [80], again higher order couplings be-
tween the neurons are admitted, just as well, to solve a combinatorial optimization
problem (namely, a certain scheduling problem in behalf of ‘cellular robotic sys-
tems’). It is argued that this approach avoids the spurious states [44] which are
usual in neural networks without higher couplings.

On the other hand, building-in constraints may be more difficult: the transfer
functions gi should be chosen in such a way that the output values always fulfill
the constraints, that is, for any set of input values Ui. The type of the built-in con-
straints effects the way the state space is walked through. E.g., having

nX
i

Vi = 1; (4.49)

the constrained space consists of an (n-1)-dimensional flat hyperplane, while
choosing

nY
i

Vi = 1; (4.50)

this space is composed of an (n-1)-dimensional curved surface. But whatever the
choice of the constraints may be, stability should be investigated whether in an
analytical or in an experimental way. As we shall see in the next section on the
results of certain simulations, the choice of right transfer functions even turns out
quite complicated. The difficulties encountered there, are strongly related to the
following question: which conditions should the built-in constraints fulfill in order to
guarantee that the continuous Hopfield network can be considered a mean field approxima-
tion of a corresponding stochastic network (submitted to the same set of constraints)?

We conclude this theoretical section by observing that the original continuous
Hopfield model, as introduced in section 2.3.2, beautifully fits into the most gen-
eral framework presented here: having monotone increasing, differentiable trans-
fer functions Vi = g(Ui), the Jacobian matrix Jg is positive definite since all its di-
agonal elements are positive while all its non-diagonal elements equal zero. Us-
ing the motion equations (4.44) with hi(V ) =

P
j wijVj+Ii, stability is guaranteed

conform theorem 4.10.

4.4 Computational results

The object of presenting the computational results of some experiments here, is
not to give an exhaustive list of all possible ways the given theory of this chapter
can be applied. Instead, the more modest objective is to show that the derived gen-
eral theories are not falsified by the elementary tests we performed, and that, at
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the same time, these tests yielded certain encouraging, informative, and startling
results which invite to do more practical research in times to come5.

4.4.1 A first toy problem

Let us start with a very simple experiment concerning constrained optimization:

minimize V 2
1 + 2V 2

2 + 3V 2
3 + 4V 2

4 subject to : V1 + V2 + V3 + V4 = 1: (4.51)

We apply the motion equations (2.30) with transfer function (4.25), which implies
that the constraints are enforced in the strong sense. As has been mentioned in
section 4.3.1, stability can be hoped for, but can not be guaranteed. Taking ran-
dom initializations, we found the correct solution in all cases. Choosing � = 20
(low temperature), the solution V1 = 0:471; V2 = 0:244; V3 = 0:163; V4 = 0:122 is
obtained. This corresponds precisely to the location of the constrained minimum.
On the other hand, taking � = 0:0001, the equilibrium solution V1 = 0:250; V2 =
0:250; V3 = 0:250; V4 = 0:250 is found, showing the expected effect of a high ther-
mal noise level.

4.4.2 A second toy problem

A second simple problem concerns a test whether non-quadratic cost functions can
be tackled using the most general framework of continuous Hopfield networks
having certain built-in constraints (section 4.3.3). We consider the following prob-
lem:

minimize � V 2
1 V

3
2 + V 5

2 subject to : V1 + V2 = 1: (4.52)

The corresponding motion equations are

_U1 = 2V1V
3
2 � U1; (4.53)

_U2 = 3V 2
1 V

2
2 � 5V 4

2 � U2; (4.54)

where

Vi =
exp(�Ui)

exp(�U1) + exp(�U2)
: (4.55)

Applying random initializations, we always found a monotone decreasing func-
tion Fmgf(V ) and the correct solutions. Taking � = 0:001, the encountered so-
lution values are V1 = 0:5001 and V2 = 0:4999. Choosing � = 50, V1 = 0:617
and V2 = 0:383 are found, which approach the exact solution values (without any
noise) in the interval [0; 1], being V1 = 0:625 and V2 = 0:375.

5Actually, some of the experimental results presented here, have been obtained quite recently. They
were induced by the most general framework, whose final formulation dates from only a couple of
months ago. There is still much work to do in order to understand all capabilities of this framework.
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4.4.3 An informative third toy problem

This third toy problem is set up in order to test whether cost functions submitted
to asymmetric linear constraints can be resolved successfully. We consider the fol-
lowing problem:

minimize 2V 2
1 + V 2

2 subject to : V1 + 2V2 = 1: (4.56)

The corresponding motion equations are

_U1 = �4V1 � U1; (4.57)
_U2 = �2V2 � U2: (4.58)

Now the problem is how to define the transfer functions. In fact, there are several
possibilities, e.g.,

V1 =
exp(�U1)

exp(�U1) + exp(�U2)
and V2 =

exp(�U2)=2

exp(�U1) + exp(�U2)
(4.59)

or

V1 =
exp(�U1)

exp(�U1) + 2 exp(�U2)
and V2 =

exp(�U2)

exp(�U1) + 2 exp(�U2)
: (4.60)

Applying random initializations, we always found convergence. However, the
solutions found did not approximate the exact solution V1 = 1=9 and V2 = 4=9.

Inspection of equations (4.59) and (4.60) reveals that in both cases, V1 2 [0; 1]
and V2 2 [0; 0:5]. Thus, we have lost the usual property that

8i : Vi 2 [0; 1]: (4.61)

This observation inspired us to look for a modification of the original problem
such that it can be mapped onto a network having constraints that yet fulfill con-
dition (4.61). Eventually, we tested the following formulation of the problem:

minimize 2V 2
1 + 1

2V
2
2 + 1

2V
2
3 subject to : V1 + V2 + V3 = 1; V2 = V3: (4.62)

The corresponding motion equations are

_U1 = �4V1 � U1; (4.63)
_U2 = �V2 � U2; (4.64)
_U3 = �V3 � U3; (4.65)

where the transfer function of all neurons equals

Vi =
exp(�Ui)P
l exp(�Ul)

: (4.66)

Having V2 = V3 (after a correct initialization), equation (4.65) exactly coincides
with (4.64). It therefore suffices in practice to merely apply motion equations (4.63)
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and (4.64), where V1 and V2 are defined conform (4.60). The difference between
this model and the previous one, comes from the difference between equations
(4.58) and (4.64).

Applying random initializations, we always found convergence and this time,
also the correct solution! Taking � = 50:0, the solution V1 = 0:117, V2 = 0:441
is found, which approximates the afore-mentioned exact solution of the original
problem. Taking � = 0:0001, the expected solution values at high temperature are
encountered, namely V1 = 0:333 and V2 = 0:333.

An important conclusion
The last example shows that the general framework can not be used groundless.
The results also set us conjecture that a property like (4.61), expressing that all neu-
rons should belong to the same interval, may be essential. Furthermore, it should
be clear that the approach of this section to tackle asymmetric linear constraints
can easily be generalized, that is, constraints of the type

X
j

ajVj = c; aj ; c 2 R; (4.67)

can normally be grappled with in the way shown. This is not further elaborated
here.

4.4.4 A startling fourth toy problem

Still another experiment has been performed in order to test whether an alterna-
tive type of constraints can be built-in successfully. Moreover, it is tried to solve
the problem using two different sets of motion equations. We consider the follow-
ing problem:

minimize 2V 2
1 + V 2

2 subject to : V1 � V2 = 1: (4.68)

It is easy to check that the exact solutions of this problem are V1 = 4
p
0:5 � 0:841

and V2 =
4
p
2 � 1:189. Using the differential equations (4.44), the concrete motion

equations are

_U1 = �4V1 � U1; (4.69)
_U2 = �2V2 � U2; (4.70)

where we take

Vi =
exp(�Ui)p

exp(�(U1 + U2))
: (4.71)

The last equation (which has been found after some tries and guesses) indeed im-
plies that V1 �V2 = 1. Alternatively, using the type of differential equations (4.45),
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the concrete motion equations are

_V1 =
exp(�U1)p

exp(�(U1 + U2))
� V1; (4.72)

_V2 =
exp(�U2)p

exp(�(U1 + U2))
� V2; (4.73)

where U1 = �4V1 and U2 = �2V2.
Applying random initializations and �t = 0:001, we found proper conver-

gence for all values of � 2 [�0:19; 20], while for values outside this interval the
motion equations were (nearly always) divergent. Both models behaved the same,
and some solutions are given in table 4.1. Actually, these solution values do not

� V1 V2
- 0.1 1.1555 0.8654

0.1 0.9258 1.0802
0.5 0.8160 1.2254
1.0 0.7740 1.2919
2.0 0.7449 1.3425

10.0 0.7155 1.3976
20.0 0.7114 1.4057

Table 4.1: Solutions values of V1 and V2 as function of �

falsify the theoretical conjectures of section 4.3.3. However, again we meet the
phenomenon that we did not solve our original optimization problem. Likewise,
the values of V1 and V2 do not fulfill condition (4.61). The effect of the controlling
parameter � has been changed too: neither solution values are dragged towards
the center of the solution space for low values of � (high temperatures), nor the
solutions found approximate the solution of the original problem at low temper-
atures. Apparently, the free energy Fmgf does not approximate the original cost
function for low values of �! 6

A second important conclusion

The aforesaid computational outcomes show that one should be very careful in
interpreting the results of the most general framework in case of building-in new
types of constraints. The quite fundamental issue at stake is that the usual sta-
tistical mechanical interpretation of the continuous Hopfield model (where 1=�
corresponds to a pseudo-temperature) does not hold for every set of built-in con-
straints. This issue raises the question as mentioned in the end of section 4.3.3,
which, alternatively, can be stated as: which conditions relating to the built-in con-
straints can guarantee that the free energy Fmgf (as defined in (4.41)), can be writ-

6Perhaps, this observation does not come as a surprise. The complete statistical mechanical inter-
pretation has shut down: because of definition (4.71), Vi can impossibly be associated with a proba-
bility.
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ten in the standard form (2.8) as known from statistical mechanics? This question
still begs for an answer.

4.4.5 The n-rook problem revisited

We here return to the constrained model that was analyzed extensively at the be-
ginning of this chapter. Since part of the constraints of the NRP can be built-in
in the neural network, whereby at the same time the space of admissible states
is considerably limited, this partially strong approach is expected to work better
than the purely soft approach applied in section 3.4. Here, the Vij are chosen in
such a way that

8i :
X
j

Vij = 1; (4.74)

implying that in every row, the sum of occupied squares of the chess-board equals
one. It now suffices to minimize the cost function

Fc;nr(V ) = c1C2(V ) +Eh(V ); (4.75)

since C2 enforces that in any column j at most one Vk;j 6= 0. The corresponding
motion equation is simply

_Uij = �@Fc;nr
@Vij

= �c2
X
k 6=i

Vkj � Uij ; where Vij =
exp(�Uij)P
l exp(�Uil)

: (4.76)

We notice that the matrix (wij;kl) is still a symmetric one. A little analysis may
clarify how the state space is limited. For that purpose, we consider the binary
model with neurons Sij (remember that Vij = hSiji). In the soft approach, all n2

neurons may independently have value 0 or 1, so then there are 2n�n different
neural net states. In the strong approach, every row has n states, so in that case,
there arenn different states. The following table shows both quantities as function
of n:

n 2n�n nn

1 2 1
2 16 4
3 524 27
4 65536 256
p 2p�p 2p log2 p

Table 4.2: 2n�n and nn as function of n.

So for large values of n, the number of admissible states differ substantially.
The experimental outcomes confirm the conjecture that the constrained network
behaves much better. Using the numerical approximation (3.58), again with ran-
dom initializations and taking �t = 0:01, convergence is always present provided
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the penalty weight is set large enough. At low temperatures, the effect of noise is
small as can be seen from table 4.3, where the neural outputs that are close to 1 are
shown. If the temperature is increased slightly more, a rapid phase transition oc-
curs: for � = 0:3, the solution values become almost equal conform Vij � 0:2500.

� Vij � 1
10 1.0000
1 0.9999
0.5 0.9767

Table 4.3: Solution values Vij � 1 as function of �, in case n = 4.

The larger n is the chosen, the larger the penalty weight c2 should be taken
in order to arrive at equilibrium. This contributes to speed up the convergence
process. The convergence time is invariably only a small fraction of the conver-
gence time of the pure penalty method. E.g., taking c2 = 50, only a few minutes
are needed in order to find a solution for the 150-rook problem while many hours
would be needed if the soft approach was applied!

It is interesting to note that the values of the neurons initially seem to change
in a chaotic way: the value of the Fc;nr strongly oscillates in an unclear way. How-
ever, after a certain period, the network suddenly finds its way to a stable mini-
mum, at the same time rapidly minimizing the value of the cost function.
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Chapter 5

The Hopfield-Lagrange model

As mentioned in section 2.4, a third way of coping with constraints is the use of La-
grange multipliers. In order to better understand the behavior of the correspond-
ing Hopfield-Lagrange model (introduced in section 2.5), we here start by ana-
lyzing its stability properties by means of a new Lyapunov function. Next, we
prove that, under certain conditions, the model degenerates into a so-called dy-
namic penalty method and we dwell on the effect of so-termed hard constraints. We
thereafter scrutinize the stability of the ‘constrained Hopfield-Lagrange model’,
which is a combination of the constrained Hopfield model of the previous chap-
ter with the multiplier approach of this chapter. In this case, an ‘arbitrary’ (see,
again, footnote 6 of chapter 3) cost function is admitted as well as ‘arbitrary’ trans-
fer functions can be chosen.

We finish by presenting the computational results of various experiments both
with unconstrained and constrained Hopfield-Lagrange networks. Parts of this
chapter have been published earlier in [12, 14], much has also been recorded in
technical report [13].

5.1 Stability analysis, the unconstrained model

5.1.1 Some reconnoitrings

For convenience, we again state the equations of the Hopfield-Lagrange model,
which is based on the use of Lagrange multipliers in combination with the original
unconstrained continuous Hopfield model. The energy of this model1 is given by

Ehl(V; �) = E(V ) +
X
�

��C�(V ) +Eh(V ) (5.1)

= � 1
2

X
i;j

wijViVj �
X
i

IiVi +
X
�

��C�(V ) +Eh(V ) (5.2)

1Although we have shown in theorem 3.3 that Eh(V ) is a thermal noise term, Ehl(V; �) does not
turn out to be a properly bounded free energy (see below). This is why we do not replace Ehl by Fhl.
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having the corresponding set of differential equations

_Ui = �@Ehl

@Vi
=

X
j

wijVj + Ii �
X
�

��
@C�
@Vi

� Ui; (5.3)

_�� = +
@Ehl

@��
= C�(V ); (5.4)

where Vi = g(Ui). Let us first take a simple toy problem in order to try to under-
stand why the gradient ascent or sign flip as referred to in section 2.4 is needed in
(5.4). The problem is stated as follows:

minimize E(V ) = V 2
1 ;

subject to : V1 � 1 = 0: (5.5)

Using the Hopfield-Lagrange model with the sigmoid as the transfer function,
the energy function (5.2) equals

Ehl;t(V; �) = V 2
1 + �1(V1 � 1) +

1

�
((1� V1) ln(1� V1) + V1 lnV1): (5.6)

At low temperatures, this energy expression simply reduces to an expression of
the form (2.43)

Epb;t(V; �) = V 2
1 + �1(V1 � 1); (5.7)

which is visualized in figure 5.1. To find the critical point (V1; �1) = (1;�2)using a

critical point

?

0
5 -10

-5
0

5

V1

�1

Epb;t

Figure 5.1: The energy landscape of V 2
1 + �1(V1 � 1).

direct gradient method, we should apply a gradient descent with respect to V1 and,
at the same time, a gradient ascent with respect to �1: the result is a spiral motion
towards the critical point. We shall see that the gradient ascent is also needed if
the Hopfield-Lagrange network is applied.
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Let us pose the question under which circumstances the set of differential equa-
tions (5.3) and (5.4) converge. A natural approach is to try the energy (5.2) as Lya-
punov function. Taking the time derivative, we obtain

_Ehl(V; �) =
X
i

(�
X
j

wijVj � Ii +
X
�

��
@C�
@Vi

+ Ui) _Vi +
X
�

_��C�

= �
X
i

_U2
i

dVi
dUi

+
X
�

C2
�: (5.8)

This reveals that if the constraints are (and remain) fulfilled, stability is guaran-
teed by using a transfer function whose derivative is always positive. However, if
the constraints are not fulfilled, _Ehl is not necessarily monotone decreasing. Thus,
we realize that stability is not guaranteed if we apply a random initialization of the
neural network. On the other hand, if we would apply a gradient descent in equa-
tion (5.4), then _Ehl(V; �) � 0. Nevertheless, this does not work since Ehl(V; �) is
generally not bounded below (see also figure 5.1). The corresponding differential
equations may be unstable and in practice, they appear to be so.

Therefore, we adhere to the original set of differential equations (5.3), (5.4) and
adopt the approach of Platt and Barr from section 2.5 as our guiding principle for
analyzing them.

5.1.2 A potential Lyapunov function

In the afore-stated approach, physics is the source of inspiration. We want to set
up an expression of the sum of kinetic and potential energy. For that purpose, the
differential equations (5.3) and (5.4) are taken together, yielding one second-order
differential equation:

�Ui = �
X
j

aij
dVj
dUj

_Uj � _Ui �
X
�

C�
@C�
@Vi

; (5.9)

where (aij) equals (2.48), that is,

aij = �wij +
X
�

��
@2C�
@Vi@Vj

: (5.10)

Equation (5.9) coincides with the equation for a damped harmonic motion of a
mass system, where the mass equals 1, the spring constant equals 0, and where
the external force of the system equals �P� C�@C�=@Vi.

Theorem 5.1. If the matrix (bij) defined by

bij = aij
dVj
dUj

+ �ij (5.11)

(�ij being the Kronecker delta) first is or becomes and then remains positive definite, then
the energy function

Ekin+pot =
X
i

1
2
_U2
i +

X
i;�

Z Ui

0

C�
@C�
@Vi

du (5.12)
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is a Lyapunov function2 for the set of motion equations (5.3) and (5.4).

Proof. Taking the time derivative ofEkin+pot and using (5.9) as well as the positive
definiteness of (bij), we obtain

_Ekin+pot =
X
i

_Ui �Ui +
X
i;�

C�
@C�
@Vi

_Ui

=
X
i

_Ui

0
@�X

j

aij
dVj
dUj

_Uj � _Ui �
X
�

C�
@C�
@Vi

1
A+

X
i;�

C�
@C�
@Vi

_Ui

= �
X
i;j

_Uiaij
dVj
dUj

_Uj �
X
i

_U2
i

= �
X
i;j

_Uibij _Uj � 0: (5.13)

ProvidedEkin+pot is bounded below (which is expected to hold in view of its def-
inition), its value constantly decreases until finally 8i : _Ui = 0. From (5.3) we see
that this normally implies that 8� : _�� = 0 too. We then conclude from equations
(5.3) and (5.4) that a stationary point of the Langrangian function Ehl(V; �) must
have been reached under those circumstances. Or, in other words, a constrained
equilibrium point of the neural network is attained. ut

Inspection of the derivation reveals why the gradient ascent is helpful in (5.4):
only when the sign flip is applied do the two terms

P
i
_Ui
P
� C�@C�=@Vi cancel

each other. In order to prove stability, we should analyze the complicated matrix
(bij) which in full equals

bij =

 
�wij +

X
�

��
@2C�
@Vi@Vj

!
dVj
dUj

+ �ij : (5.14)

Application of the Hopfield-Lagrange model to combinatorial optimization prob-
lems yields non-positive values for wij , so then w0ij � �wij � 0. If we confine
ourselves to expressions C� which are linear functions in V , then equation (5.14)
reduces to

bij = w0ij
dVj
dUj

+ �ij : (5.15)

If the �ij-terms dominate, then (bij) is positive definite and stability is sure. How-
ever, it seems impossible to formulate general conditions which guarantee stabil-
ity, since the matrix elements bij are a function of dVj=dUj and thus change dy-
namically during the update of the differential equations. This observation ex-
plains why we called this subsection ‘A potential Lyapunov function’.

2SinceEkin+pot is the sum of kinetic and potential energy of the damped mass system, this function
is a generalization of the Lyapunov function introduced by Platt and Barr [71]. They used equation
(2.47) which has a simple quadratic potential energy term. Here, this term cannot be used because of
the non-linear relationshipVi = g(Ui). The quadratic term has to be modified in the integral as shown,
while _Vi is replaced by _Ui.
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In practical applications, we can try to analyze matrix (bij). If this does not turn
out successful, we may rely on experimental results. However, there is a way of
escape, namely, by applying quadratic constraints. Under certain general condi-
tions, they appear to guarantee stability in the long run at the cost of a degenera-
tion of the Hopfield-Lagrange model to a type of penalty model.

5.2 Degeneration to a dynamic penalty model

5.2.1 Non-unique multipliers

We consider the Hopfield-Lagrange model as defined in the beginning of section
5.1.1.

Theorem 5.2. Let W be the subspace of [0; 1]n such that V 2 W ) 8� : C�(V ) = 0
and let V 0 2 W . If the condition

8�;8i : C� = 0) @C�
@Vi

= 0 (5.16)

holds, then there do not exist unique numbers �01; : : : ; �
0
m such thatEhl(V; �) has a crit-

ical point in (V 0; �0).

Proof. The condition (5.16) implies that allm�m submatrices of the Jacobian (A.3)
are singular. Conform the ‘Lagrange Multiplier Theorem’ of appendix A, unique-
ness of the numbers �01; : : : ; �0m is not guaranteed. Moreover, in the critical point
of Ehl the following equations hold:

X
j

wijV
0
j + Ii �

X
�

��
@C�
@Vi

(V 0)� Ui = 0: (5.17)

Since 8� : @C�=@Vi(V
0) = 0, the multipliers �� may have arbitrary values in a

critical point of Ehl(V; �). ut

In the literature (e.g. in [85, 44, 82, 86, 88]) and in section 5.5 and 5.6 of this
thesis, quadratic constraints are frequently encountered, often having the form

C�(V ) = 1
2 (
X
i�

Vi� � n�)
2 = 0; � = 1 � � �m; (5.18)

where any n� equals some constant. Commonly, the constraints relate to only a
subset of all Vi. So, for a constraint C�, the index i� passes through some subset
N� of f1; 2; : : : ; ng. We conclude that

@C�
@Vi

=

� P
i�
Vi� � n� if i 2 N�

0 otherwise.
(5.19)

It follows that condition (5.16) holds for the quadratic constraints (5.18). This im-
plies that multipliers associated with those constraints are not uniquely deter-
mined in equilibrium points of the corresponding Hopfield-Lagrange model.
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5.2.2 Stability yet

The question may arise how the Hopfield-Lagrange model deals with the non-
determinacy of the multipliers3. To answer that question, we again consider (5.2),
(5.3) and (5.4) and substitute the quadratic constraints (5.18). This yields

Ehl;q(V; �) = E(V ) +
X
�

��
2
(
X
i�

Vi� � n�)
2 +Eh(V ); (5.20)

_Ui = � @E
@Vi

�
X

�:i2S�

��(
X
i�

Vi� � n�)� Ui; (5.21)

_�� = 1
2 (
X
i�

Vi� � n�)
2: (5.22)

Theorem 5.3. If 8i : Vi = g(Ui) is a differentiable and monotone increasing function,
then the set of differential equations (5.21) and (5.22) is stable.

Proof. We start by making the following crucial observations:

1. As long as a constraint is not fulfilled, it follows from (5.22) that the
corresponding multiplier increases:

_�� > 0: (5.23)

2. If, at a certain moment, all constraint are fulfilled, then the set of mo-
tion equations (5.21) and (5.22) reduces to

_Ui = � @E
@Vi

� Ui: (5.24)

Since we are dealing with the unconstrained Hopfield model, this sys-
tem is stable provided the transfer function is differentiable and mono-
tone increasing (chapter 3). This implies that instability of the system
can only be caused by violation of one or more of the quadratic con-
straints.

We now consider the total energy Ehl;q of (5.20). Suppose that the system is ini-
tially unstable (if it would be stable, the set of differential equations would con-
verge rapidly). One or more constraints must then be violated and the values of
the corresponding multipliers will increase. If the instability endures, the multi-
pliers will eventually become positive. It follows from (5.20) that the contributionX

�

��
2
(
X
i�

Vi� � n�)
2 (5.25)

to Ehl;q then consists of only convex quadratic forms, which correspond to vari-
ous parabolic ‘pits’ or ‘troughs’ 4 in the energy landscape of Ehl;q. As long as the

3This must be in a certain positive way, since the aforementioned experiments from the literature
were at least partially successful.

4If i� passes through the whole set f1; 2; : : : ; ng, (
P

i�
Vi� � n�)2 represents a n-dimensional

parabolic pit. If, instead, i� passes through a proper subset of f1; 2; : : : ; ng, this quadratic expression
represents a trough in the energy landscape of Ehl;q. However, in both cases, we shall speak of pits.
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multipliers grow, the pits become steeper and steeper. Eventually, the quadratic
terms will dominate and the system settles down in one of the created energy pits
(whose location, we realize, is more or less influenced by E and Eh). In this way,
the system will ultimately fulfill all constraints and will have become stable. ut

Actually, for positive values of ��, the multiplier terms (5.25) fulfill the penalty
term condition (2.37) and therefore act as penalty terms. Furthermore we notice
that in case of applying a continuous neural network (where 8i : Vi 2 [0; 1]), the
minima of (5.25) might be boundary extrema.

As was sketched in the proof, the system itself always finds a feasible solution.
This contrasts strongly with the traditional penalty approach, where the experi-
menter may need a lot of trials to determine appropriate penalty weights. More-
over, as sketched, the penalty terms might be ‘as small as possible’, having the
additional advantage that the original cost function can be minimally distorted.
Since the penalty weights change dynamically on their journey to equilibrium, we
have met with what we shall term a dynamic penalty method.

5.2.3 A more general view on the degeneration

In the previous two subsections, we analyzed the degeneration of the Hopfield-
Lagrange model under the specific condition (5.16) concerning the constraints.
Here, a more general analysis of this deterioration to a dynamic penalty method
is sketched, where the proof whether the multipliers are unique or not, does
notbother us.

We consider the unconstrained Hopfield-Lagrange model as it was re-stated at
the beginning of section 5.1.1. We already observed in that section that instability
must be caused by the violation of one or more of the constraints provided the
correct transfer function has been selected. We realize that if

1. 8�;8V : C�(V ) � 0, and

2. increasing multiplier values correspond to a changing energy land-
scape with ever deeper pits whose minima represent valid solutions,

then the set of differential equations (5.3), (5.4) will generally be stable. The evi-
dence for this phenomenon is based on the crucial observations (5.23) and (5.24),
and is further discussed below.

It is interesting to note that the origin of ever deeper pits in the energy land-
scape resembles the phenomenon of a phase transition in a certain sense. If, in the
unconstrained Hopfield model the temperature is increased, one steep pit is cre-
ated by the entropy term (3.30). Above the critical temperature, the entropy term
dominates and the corresponding solution equals 8i : Vi � 0:5. In case of the
degenerated Hopfield-Lagrange model, the pits originate by increasing multipli-
ers (which behave like penalty weights). Above a certain set of critical values, the
multiplier terms dominate and the various minima correspond to approximately
feasible solutions.
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In addition, mean field annealing can be applied. In that case, two transforma-
tions of the energy landscape occur simultaneously, one being caused by increas-
ing multipliers, the other by a lowering of the temperature. We must take the ad-
ventitious consequence of a tuning problem concerning the absolute and relative
speed of the two transformations.

5.3 Hard constraints

Let us return to our toy problem (5.5) and see how it works in practice. Using the
Hopfield-Lagrange model, the differential equations corresponding to (5.6) are

_U1 = �(2V1 + �1)� U1; (5.26)
_�1 = V1 � 1; (5.27)

where V1 = g(U1) = 1=(1 + exp(��U1)). We note that V1 is now bounded to the
interval [0; 1]. We can easily prove stability, since in this case

_Ekin+pot;t = �2 _U2
1

dV1
dU1

� _U2
1 � 0: (5.28)

Consequently, Ekin+pot is monotone decreasing until _U1 = 0 and thus, normally,
until _�1 = 0, which in turn implies V1 = 1 and U1 = 1. Inspection of (5.26)
now reveals that in equilibrium, �1 must equal �1. So the critical point of Ehl;t

is (V1; �1) = (1;�1) and we have run up against an unexpected difficulty. We
have lost the pretty feature of the continuous Hopfield model of finding solutions
corresponding to finite values of U1. The reason is obvious: the ‘hard’ constraint
V1 � 1 restricts the solution space to V1 = 1 with corresponding U1-value equal
to 1.

There exists a simple solution for this problem ‘in the spirit’ of the continuous
Hopfield model. If we relax the hard constraint (5.27) to

V1 � 1 = �; (5.29)

the new energy expression becomes

Ehl;t0 = V 2
1 + �1(V1 � 1 + �) +

1

�
[(1� V1) ln(1� V1) + V1 lnV1]; (5.30)

having its critical point in (V1; �1) = (1� �;�2 +��1), where

��1 = 2�+
1

�
ln(

�

1� �
): (5.31)

We see that the critical point is situated in the neighborhood of the original value if
the error ��1 (which is determined by � and �) is small. Like in the original Hop-
field model, it can be kept small if we choose large values of �. To determine the
sensitivity of the parameters, we performed some calculations. We may conclude
from the computational results as given in table 5.1 that sufficiently high values
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� = 0:001 � = 0:01 � = 0:1
� ��1 � ��1 � ��1

5000 +0:0006 5000 +0:019 5000 +0:199
500 �0:01 500 +0:010 500 +0:196
50 �0:136 50 �0:07 50 +0:156

5 �1:38 5 �0:90 5 �0:239
1 �6:9 1 �4:58 1 �1:997

Table 5.1: The error ��1 as a function of � and �.

of � indeed guarantee a small error ��1. In figure 5.2, some critical points have
been put together. The position (1;�2) of the constrained minimum of Epb;t is
shown, together with some positions of the extrema of Ehl;t0 for various values of
� and � = 0:01. Clearly, the critical point (V1; �1) = (1;�1) of Ehl;t is absent in
the figure.
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Figure 5.2: Positions of some critical points of Ehl;t0
and of the minimum of Epb;t.

We note that the described difficulty of an infinite multiplier value only occurs if
one constraint on its own, or several constraints together, are hard, by which we
mean that the constraints extort that 9i : Vi = 0 or Vi = 1. In practice, one often
encounters constraints like X

i

Vi � 1 = 0: (5.32)

If such a constraint stands alone or is independent of the other ones, the Hop-
field termEh generally drags the corresponding minima to the interior of the state
space in the usual way as we have described in section 3.2.2.
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5.4 Stability analysis, the constrained model

One could wonder whether a stability analysis is possible in case of combining
the most general framework of chapter 4 – having ‘arbitrary’ cost functions and
‘arbitrary’ transfer functions – with the multiplier approach of this chapter. If
so, this model can be used to build-in part of the constraints directly, while other
ones are tackled using Lagrangian multipliers. In this subsection, the constraints
C�(V ) = 0 are assumed only to belong to the last category!

Let us take equation (4.41) of the most general framework as the starting point
and then add multiplier terms to this expression. This yields the Lagrangian func-
tion

L(U; V; �) = �H(V ) +
X
�

��C�(V ) +
X
i

UiVi �G(U): (5.33)

We want to determine the stationary points of L(U; V; �) since these points cor-
respond to the solutions of the constrained optimization problem relating to this
matter. It can be done by resolving the differential equations

_Ui = � @L

@Vi
=
@H

@Vi
�
X
�

��
@C�
@Vi

� Ui; (5.34)

_�� = +
@L

@��
= C�(V ); (5.35)

where, just like in equation (4.44), we keep permanently Vi = gi(U). We note that
8i : Vi = gi(U) implies that 8i : @L=@Ui = 0. Now, the following theorem can be
proven which is a drastic generalization of theorem 5.1.

Theorem 5.4. If the matrix (dij) defined by

dij =
X
k

cik
@Vk
@Uj

+ �ij ; (5.36)

cik being

cik = � @2H

@Vi@Vk
+
X
�

��
@2C�
@Vi@Vk

; (5.37)

first is or becomes and then remains positive definite, then the energy function (5.12) is a
Lyapunov function for the motion equations (5.34) and (5.35), where 8i : Vi = gi(U).

Proof. In this case,

�Ui = �
X
j

cij
X
k

@Vj
@Uk

_Uk � _Ui �
X
�

C�
@C�
@Vi

: (5.38)
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Taking the time derivative of (5.12), we obtain

_Ekin+pot =
X
i

_Ui �Ui +
X
i;�

C�
@C�
@Vi

_Ui

=
X
i

_Ui

0
@�X

j

cij
X
k

@Vj
@Uk

_Uk � _Ui �
X
�

C�
@C�
@Vi

1
A+

X
i;�

C�
@C�
@Vi

_Ui

= �
X
i;j

_Ui
X
k

cik
@Vk
@Uj

_Uj �
X
i

_U2
i

= �
X
i;j

_Uidij _Uj � 0: (5.39)

The rest of the proof is analogous to the proof of theorem 5.1. In the end, we have
8i : _Ui = 0, 8� : _�� = 0, and Vi = gi(U), together implying that all partial
derivatives ofL(U; V; �) are zero. In other words, a constrained equilibrium point
of the neural network has then been reached. ut

The matrix (dij) is given in full by

dij =
X
k

 
� @2H

@Vi@Vk
+
X
�

��
@2C�
@Vi@Vk

!
@Vk
@Uj

+ �ij : (5.40)

This matrix is even more complicated than matrix (bij), which was briefly ana-
lyzed in section 5.1.1. We must conclude that it will often be impossible to give an
analytical proof of stability, implying that, in those cases, we should either rely on
experimental results, or apply quadratic constraints.

We finish this theoretical part by observing that it seems also possible to select
other updating rules for finding an equilibrium state of the general constrained
Hopfield-Lagrange network (see theorem 4.10). However, these approaches have
not been elaborated.

5.5 Computational results, the unconstrained model

5.5.1 Simple optimization problems

We started by performing some simple experiments by trying various quadratic
cost functions with linear constraints. The general form equals

minimize E(V ) = 1
2

nX
i=1

di(Vi � ei)
2;

subject to : a�i Vi � b�i = 0; � = 1; ::;m; (5.41)

where di is always chosen positive. The cost function is always such that its min-
imum belongs to the state space [0; 1]n and the constraints are non-contradictory.
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Since for this class of problems

@2E

@Vi@Vj
= di�ij ^ @2C�

@Vi@Vj
= 0; (5.42)

the corresponding time derivative of the sum of kinetic and potential energy
equals

_Ekin+pot;s = �
nX
i=1

(di
dVi
dUi

+ 1) _U2
i � 0: (5.43)

Using the sigmoid as the transfer function, we expect convergence for all problem
instances. All initializations of Vi, as well as of the multipliers, were chosen ran-
domly. We started trying the ’toy problem’ (5.5), which has been analyzed in sec-
tion 5.3. Using �t = 0:0001 and � = 50,U was still growing (to1) and � was still
shrinking (to -1) after 107 iterations, which complies with the given theoretical
conjectures. Cutting off the calculations, we found the ’final’ values V = 0:999959
and � = �2:404412. Thereupon, we relaxed the constraint to V �1 = �. Resolving
the corresponding set of differential equations, choosing � = 0:01, and leaving the
other parameters unchanged, we found asymptotic convergence to V = 0:990000
and � = �2:163805: the first value is the correct one and the second one approxi-
mates the theoretical value �2:07 from table 5.1.

To investigate scalability, we extended the number of neurons and the number
of constraints in formula (5.41). In all cases, we encountered proper convergence.
E.g., taking

minimize V 2
1 + (V2 � 1)2 + V 2

3 + (V4 � 1)2 + � � �+ (V50 � 1)2;

subject to:

8>>>>><
>>>>>:

V1 + V2 + � � � + V10 = 5
V6 + V7 + � � � + V15 = 5
V11 + V12 + � � � + V20 = 5

...
...

...
...

V41 + V42 + � � � + V50 = 5;

(5.44)

after 106 iterations with �t = 0:0001 and � = 50, we found

8i : i 2 f1; 3; 5; � � � ; 49g : Vi = 0:056360

8i : i 2 f2; 4; 6; � � � ; 50g : Vi = 0:943640;

so, the constraints are exactly fulfilled. We also observe the expected effect of the
Hopfield term. The values of the 9 multipliers �� all equal 0.000000, correspond-
ing precisely to the theoretical ones, as can be easily verified. We repeated the ex-
periment, now choosing � = 100. We found

8i : i 2 f1; 3; 5; � � � ; 49g : Vi = 0:033593

8i : i 2 f2; 4; 6; � � � ; 50g : Vi = 0:966407:

The influence of the Hopfield term has diminished, which also corresponds to the
theoretical expectations.
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5.5.2 The weighted matching problem

To investigate whether the Hopfield-Lagrange model is able to solve combinato-
rial optimization problems in an adequate way, we performed some other exper-
iments. We first report the results of the computations concerning the WMP of
section 2.2.2. Interpreting Vij = 1 (Vij = 0) as if point i is (not) linked to point j,
where 1 � i < j � n, we tried several formulations of the constraints. Using lin-
ear constraints, the corresponding system turned out to be unstable. Therefore,
we continued by trying quadratic ones since then, stability is generally guaran-
teed, as was pointed out in section 5.2.3. The corresponding formulation of the
problem is

minimize E(V ) =
n�1X
i=1

nX
j=i+1

dijVij ;

subject to:

C1;i(V ) = 1
2 (

i�1X
j=1

Vji +

nX
j=i+1

Vij � 1)2 = 0; (5.45)

C2;ij(V ) = 1
2Vij(1� Vij) = 0: (5.46)

The constraints (5.46) describe the requirement that finally, every Vij must equal
either 0 or 1. We note that every C2;ij corresponds to a concave function whose
minima are boundary extrema. The corresponding multipliers are denoted by �ij .
In combination with (5.46), the constraints (5.45) enforce that every point is linked
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Figure 5.3: A solution of the WMP for n = 32.
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to precisely one other point. The corresponding multipliers are �i, and the com-
plete set of differential equations becomes

_Uij = �dij � �i(

i�1X
k=1

Vki +

nX
k=i+1

Vik � 1)�

�j(

j�1X
k=1

Vkj +

nX
k=j+1

Vjk � 1)� �ij(
1
2 � Vij)� Uij ; (5.47)

_�i = 1
2 (

i�1X
j=1

Vji +

nX
j=i+1

Vij � 1)2; (5.48)

_�ij = 1
2Vij(1� Vij): (5.49)

Again, the sigmoid was the selected transfer function. The multipliers were ini-
tialized with the value 0. The experiments showed proper convergence. Using 32
points, the corresponding system consists of 1024 differential equations and 528
multipliers. After 40 000 iterations using � = 500 and �t = 0:001, the values of
�i lay in the interval [0:14; 0:83], while those of �ij were mostly of order 10�4 and
sometimes of order 10�1. The values of Vij equalled 0:0000 or lay in the interval
[0:997; 1:000], which is interpreted as equal to 1. The corresponding solution is vi-
sualized in figure 5.3. We have repeated the experiment and always found solu-
tions of similar quality, e.g., a solution where 13 (of the 16) links equal the links of
the solution shown.

In order to show how difficult the stability analysis can be when using theo-
rem 5.1, we determined the matrix (5.11) in case of n = 4. Enumerating rows and
columns in the order (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), we found:

(bwmij;kl) =

0
BBBBBBBBBBBBBBBB@

�12 �1�13 �1�14 �2�23 �2�24 0

�1�12 �13 �1�14 �3�23 0 �3�34

�1�12 �1�13 �14 0 �4�24 �4�34

�2�12 �3�13 0 �23 �2�24 �3�34

�2�12 0 �4�14 �2�23 �24 �4�34

0 �3�13 �4�14 �3�23 �4�24 �34

1
CCCCCCCCCCCCCCCCA

where

�ij = 1 + (��ij + �i + �j)
dVij
dUij

^ �ij =
dVij
dUij

: (5.50)

In general, we can not prove convergence because the properties of the matrix bwm

change dynamically. However, stability in the initial and final states can easily be
demonstrated. Initially, we set all multipliers equal to 0. Then, bwm reduces to the



5.5 Computational results, the unconstrained model 87

unity matrix. On the other hand, if a feasible solution is found in the end, then
8i; j : Vij � 0 or Vij � 1 implying that all �ij � 0. This again implies that bwm

reduces to the unity matrix. Since the unity matrix is positive definite, stability is
guaranteed both at the start and in the end. However, during the updating pro-
cess, the situation is much less clear. We have not further analyzed this theoreti-
cally.

5.5.3 The NRP and the TSP

To see whether the Hopfield-Lagrange model is useful for solving more diffi-
cult combinatorial optimization problems, we have tried to solve the TSP (section
2.2.2). We shall see that the NRP (section 3.4.1 and 4.4.5), itself being a purely com-
binatorial problem, is a special case of the combinatorial optimization TSP. We first
consider a formulation of the TSP given by Hopfield and Tank [49]:

minimize Etsp(V ) =
X
i;j;k

VijdikVkj+1; (5.51)

subject to the constraints (3.53) to (3.55) of the NRP. Here, Vij means that city i is
visited in the j-th position, and dij represents the distance between city i and city
j. Indices should be taken modulo n and it is supposed that dij = dji. Applying
the Hopfield-Lagrange model, we search for the extrema of

Ehl;u;tsp1(V; �) = Etsp(V ) +
3X

�=1

��C�(V ) +Eh(V ): (5.52)

The corresponding set of differential equations equals

_Uij = �
X
k

dik(Vkj+1 + Vkj�1)� �1
X
k 6=j

Vik �

�2
X
k 6=i

Vkj � �3(
X
i;j

Vij � n)� Uij ; (5.53)

_�1 =
X
i;j

X
k>j

VijVik ; (5.54)

_�2 =
X
j;i

X
k>i

VijVkj ; (5.55)

_�3 = 1
2 (

nX
i;j

Vij � n)2: (5.56)

Comparing (5.52) to (3.56), we see that ifEtsp(V ) = 0, the TSP reduces to the NRP.
It is clear that the applied constraints are quadratic. If 8� : �� > 0, condition (2.37)
holds for the multiplier terms, so in that case, they behave like penalty terms. We
also note that 8i : _�i � 0 and we therefore expect convergence of the set of differ-
ential equations.
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The n-rook problem, again revisited

We already mentioned some computational results of the NRP using the soft ap-
proach (section 3.4.1) as well as the partially strong approach (section 4.4.5). Here,
we want to test the Hopfield-Lagrange model for the same problem. We should
apply the set of differential equations (5.53) to (5.56), where 8i;8k : dik = 0.

Using random initializations of Vi, we found convergence provided that �t is
small enough. E.g., for n = 25, � = 500 and �t = 0:0001 we found, after 2000 it-
erations, �1 = 0:655935, �2 = 0:649828, (a still growing multiplier) �3 = 0:690099,
and an almost feasible solution. The increase of �3 can easily be explained by the
theory of section 5.3 on hard constraints implying Ui-values equal to +1 or �1.
We further note that all multipliers have become positive.

The Travelling Salesman Problem

Using the Hopfield-Lagrange model, the TSP can be grappled by searching the ex-
trema of (5.52). In accordance with the observations as given in [86] (section 2.5),
we found proper convergence to nearly feasible solutions, provided �t was cho-
sen small enough. Unfortunately, the quality of the solutions was very poor. Even
problem instances of 4 cities did not yield optimal solutions every time. Trying in-
stances with 32 cities yielded solutions like the bad one shown in figure 5.4.

Inspired by the success with the WMP, we tried to solve the TSP in a differ-
ent way namely by taking other quadratic constraints with one multiplier for every
single constraint. We expected to find better solutions, because in this approach
many more multipliers are used, which should make the system more ‘flexible’.
The modified problem is to find an optimal extremum of

Ehl;u;tsp2(V; �) =
X
i;j;k

VijdikVkj+1 +
X
i

�i
2
(
X
k

Vik � 1)2 +

X
j

�j
2
(
X
k

Vkj � 1)2 +
X
i;j

�ij
2
Vij(1� Vij): (5.57)

The corresponding set of differential equations equals

_Uij = �
X
k

dik(Vkj+1 + Vkj�1)� �i(
X
k

Vik � 1)�

�j(
X
k

Vkj � 1)� �ij(
1
2 � Vij)� Uij ; (5.58)

_�i =
X
i

1
2 (
X
k

Vik � 1)2; (5.59)

_�j =
X
j

1
2 (
X
k

Vkj � 1)2; (5.60)

_�ij =
X
i;j

1
2Vij(1� Vij): (5.61)

Again, the experiments showed proper convergence. For very small problem in-
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Figure 5.4: A solution of the TSP1 for n = 32.
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Figure 5.5: A solution of the TSP2 for n = 32.
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stances we found optimal solutions. E.g., this time problem instances of 4 cities
always yielded optimal solutions. Large problem instances also yielded feasible,
but non-optimal solutions. An example is given in figure 5.5, where 32 cities were
used, �t = 0:001 and the applied number of iterations was 100 000. The encoun-
tered values ofVij were either 0.0000 or lay in the interval [0.9988;1.0000]. The 1088
multipliers were still growing very slowly in order to realize exact fulfillment of
the constraints, again owing to the problem with hard constraints. The quality of
the solution is certainly better than the one we found in the previous subsection,
although still not optimal. Apparently, the treatment of the constraints is now bet-
ter, due to the use of much more multipliers. However, like in all other recurrent
neural network approaches as known from literature, scalability appears to be a
tough problem.

5.6 Computational results, the constrained model

It is interesting to experiment with combinations of the constrained Hopfield and
the Hopfield-Lagrange model. Which part of the constraints is built-in and which
part is tackled with multipliers, strongly depends on the structure of the problem.
E.g., in case of the WMP (section 5.5.2), the constraints are highly interweaved and
the constrained model is not at all applicable. Our approach will be the following
one. Since building-in constraints has proven to be rather successful, we try to do
this as much as possible. The remaining part of the constraints will be dealt with
using multipliers.

5.6.1 For the last time, the n-rook problem

A constrained Hopfield-Lagrange formulation of the NRP resembles the formu-
lation as given in section 4.4.5. The only difference concerns the penalty weight,
which becomes a multiplier. We search an optimal extremum of the function

Ehl;c;nr(V; �) = �1
X
j;i

X
k>i

VijVkj +Eh(V ); (5.62)

using the motion equations

_Uij = ��1
X
k 6=i

Vkj � Uij ; (5.63)

_�1 =
X
j;i

X
k>i

VijVkj ; (5.64)

where

Vij =
exp(�Uij)P
l exp(�Uil)

: (5.65)

The final multiplier value appears to depend on the initialization values of both
the neurons and of�1. Moreover, for large problem instances, �t should be chosen
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n �1;in �t �1;�n
4 0 0.01 1.83
4 0 0.01 2.13

22 0 0.01 10.24
22 0 0.01 10.33
22 0 0.001 9.88
22 0 0.001 10.17
22 5 0.001 10.38
22 5 0.001 10.41
50 0 0.01 22.53

100 0 0.01 83.73
150 50 0.004 87.27
150 50 0.004 88.14

Table 5.2: Some initial and final multiplier values of the NRP.

small enough in order to avoid a too rapid increase of the multiplier value. For the
rest, the experimental results are identical to those of section 4.4.5. We performed
experiments up to n = 150. Using � = 10, we always encountered convergence.
In the above-given table, we report (for certain problem instances) an appropri-
ate value of �t, the initial value �1;in and the final value �1;�n of multiplier �1.
From the table we conclude that in case of n = 22, the critical value �1;cr � 10. If
�1 < �1;cr, the set of motion equations appears to be unstable, yielding a constant
increase of �1. As soon as its critical value has been reached, the system suddenly
becomes stable and the constraints are rapidly fulfilled. This indeed resembles a
phase transition which was conjectured in section 5.2.3.

5.6.2 The TSP

There are various ways to solve the TSP using the constrained model. The sim-
plest approach concerns an adaptation of (5.62). It suffices to add the cost func-
tion Etsp(V ) as given by (5.51) to Ehl;c;nr(V; �1) and to adapt the corresponding
motion equations. Again, the single multiplier appears to increase until a feasible
solution is found. In this way, stability is always found. However, the quality of
the solutions is rather poor. Even for n = 4, the solution found is not always the
optimal one.

In a second approach, the constraint C2(V ) is split into n separated ones, with
a different multiplier for every one. Then, the problem is to find an optimal ex-
tremum of

Ehl;c;tsp2(V; �) =
X
i;j;k

VijdikVkj+1 +
X
j

�j
X
i

X
k>i

VijVkj +Eh(V ): (5.66)

The corresponding set of motion equations consists of a straightforward adapta-
tion of the set (5.63) and (5.64). Unfortunately, the quality of the solutions remains
poor. Even in this case, the solution found for n = 4 is not always the optimal one.
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Thereupon, it is tried to resolve a constrained version of the approach of section
5.5.3 using other and much more quadratic constraints. The set of differential
equations applied is

_Uij = �
X
k

dik(Vkj+1 + Vkj�1)� �j(
X
k

Vkj � 1)�

�ij(
1
2 � Vij)� Uij ; (5.67)

_�j =
X
j

1
2 (
X
k

Vkj � 1)2; (5.68)

_�ij =
X
i;j

1
2Vij(1� Vij); (5.69)

where the transfer function is (5.65). This set of equations correspond to the en-
ergy function defined by

Ehl;c;tsp3(V; �) =
X
i;j;k

VijdikVkj+1 +
X
j

�j
2
(
X
k

Vkj � 1)2 +

X
i;j

�ij
2
Vij(1� Vij) +Eh(V ): (5.70)

Using n = 4, the optimal solution is always found, again proving the expected
flexibility of the system. Trying a problem instance with n = 15, we encountered
the optimal solution at times, but also a slightly worse one occasionally. Finally,
trying an instance with n = 32, we did not find the optimal one. The quality is
even worse than in case of using the unconstrained Hopfield-Lagrange model dis-
cussed in the previous section. Scalability again turns out to be a difficult issue.

Two things can still be tried. First, other mappings of the TSP on the Hopfield-
Lagrange model using other cost functions (e.g., those having higher order terms
[24, 80]) can be investigated. A second thing to do is to apply the technique of
(mean field) annealing. These experiments have yet to be done.



Chapter 6

Elastic networks

We dwell upon Simic’s claim that statistical mechanics is the underlying theory
of both ‘neural’ and ‘elastic’ optimizations. We shall explain why we think his
derivation is incorrect. In our view, the elastic net algorithm (ENA) as sketched in
section 2.6 should be considered as a specific dynamic penalty method. We next
give an analysis of the ENA by considering elastic net forces as well as various en-
ergy landscapes. This analysis further underpins our view. Finally, we formulate
two alternative elastic net algorithms and report some computational results.

Parts of this chapter will soon be published [19]. A substantial part can be
found in the technical reports [16, 18].

6.1 The ENA is a dynamic penalty method

In his analysis of the relationship between neural and elastic networks [77], Simic
applies the stochastic binary constrained Hopfield model of chapter 4. The moti-
vation for using a stochastic model is based upon the idea of considering stochas-
tic ‘particle trajectories’. Using the customary statistical mechanical arguments,
the particle should spontaneously find the path of minimal length (the path length
is the Hamiltonian of the problem). Like has been explained in chapter 2, this phe-
nomenon can also be described by a minimization process of the corresponding
free energy.

Stated more precisely, a ‘statistical mechanics’ is defined regarding particle tra-
jectories as an ensemble, where the paths of legal trajectories must obey the global
constraints of the TSP. That is, the particle cannot visit two space-points at the
same time and it visits all the points once and only once. The legal trajectory with
the shortest path length equals the wanted shortest path and coincides with the
shortest tour of the travelling salesman. The chosen representation of the tour
length is the Hamiltonian

Htsp(S) =
1
4

X
i

X
p;q

d2pqS
i
p(S

i+1
q + Si�1q ) + �

4

X
i

X
p;q

d2pqS
i
pS

i
q ; (6.1)
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where Sip denotes whether the salesman at time i occupies space-point p or not
(Sip = 1 or Sip = 0), and where dpq represents the distance between the space
points p and q. The first term of (6.1) equals the sum of distance-squares between
cities visited, while the second term is a penalty term which penalizes the simul-
taneous presence of the salesman at more than one position. Other constraints
should guarantee that any city is visited once and only once. They are built-in
in the strong way by imposing

8p :
X
i

Sip = 1: (6.2)

A mean field approximation of the free energy of general stochastic Hopfield net-
works submitted to the constraints (6.2) can easily be found by applying theo-
rem 4.1 n times. Also taking Ii = 0 and replacing wij by �wij (see the note at
the end of section 4.1), one finds [77]

Fc1;g(V ) = � 1
2

X
i;j

X
p;q

wijpqV
i
pV

j
q � 1

�

X
p

ln
�X

i

exp(��
X
j;q

wijpqV
j
q )
�
; (6.3)

where the stationary points of Fc1;g(V ) equal the solutions of

V ip =
exp(��Pj;q w

ij
pqV

j
q )P

l exp(��
P
j;q w

lj
pqV

j
q )
: (6.4)

Substituting the cost function (6.1) in (6.3) yields the actual free energy approxi-
mation of the TSP, being

Ftsp(V ) = � 1
4

X
i

X
p;q

d2pqV
i
p (V

i+1
q + V i�1q )� �

4

X
i

X
p;q

d2pqV
i
pV

i
q �

1
�

X
p

ln
�X

i

exp(��
2

X
q

d2pq(�V
i
q + V i+1

q + V i�1q ))
�
: (6.5)

It is interesting to note Simic’s observation that expression (6.3) has the ‘wrong’
sign. The structure of the equation indeed suggests that its stationary points cor-
respond to maxima (compare the results of the sections 3.2 and 4.2), while those of
the ENA are minima. Especially this phenomenon aroused our suspicions regard-
ing his derivation. From here, we continue to sketch Simic’s derivation, eventu-
ally resulting into the ENA. At the same time, we shall formulate our objections.

Objection 1. In order to derive a free energy expression in the standard form (2.8),
Simic applies a Taylor series expansion on the last term of (6.5). We shall do the
same. We first define

f(x) =
X
p

ln
�X

i

exp(xip)
�
; (6.6)

aip = �� �2
X
q

d2pqV
i
q ; and (6.7)

hip = �� 1
2

X
q

d2pq(V
i+1
q + V i�1q ); (6.8)
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implying that

@f

@xip
(aip) =

exp(aip)P
l exp(a

l
p)
: (6.9)

For the TSP, the mean field equations (6.4) can be written as

V ip =
exp(aip + hip)P
l exp(a

l
p + hlp)

� exp(aip)P
l exp(a

l
p)
; (6.10)

provided that j hip j�j aip j (this can be arranged by setting �� 1). Now, combin-
ing (6.6), (6.7), (6.8), (6.9), and (6.10), we obtain

f(a+ h) =
X
p

ln
�X

i

exp(aip)
�
+
X
i;p

hip
@f

@xip
(aip) +O(h2) (6.11)
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q + V i�1q ): (6.12)

Substitution of this result in (6.5) yields

Ftsp;app(V ) = 1
4

X
i

X
p;q

d2pqV
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p (V
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X
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d2pqV
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q

�
: (6.13)

Simic found a slightly different expression with the weight value �2 instead of the
value��

4 . He simply ignores this term by saying that it vanishes if the constraints
are obeyed. Doing the same (although it is in itself dubious), the following expres-
sion of the free energy is obtained:

Ftsp;sim(V ) = 1
4

X
i

X
p;q

d2pqV
i
p (V

i+1
q + V i�1q )�

1
�

X
p

ln
X
i

exp
�� � �2

X
q

d2pqV
i
q

�
: (6.14)

However, inspection of equation (6.11) reveals that the chosen first-order Taylor-
approximation does not hold for low values of the temperature, i.e., for high val-
ues of �, since hip as defined in (6.8) is proportional to �. This observation concerns
a fundamental objection since, during the execution of the ENA, the parameter �
is increased step by step until it has reached a relatively high value in the end. ut

Objection 2. In order to transform the Hopfield network formulation of the TSP
into the elastic net one, Simic performs a ‘decomposition of the particle trajectory’:

xi = <x(i)> =
X
p

xp<S
i
p> =

X
p

xpV
i
p : (6.15)
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Here, x(i) is the (stochastic) position of the particle at time i, xp is the vector denot-
ing the position of city point p, and xi denotes the average (or expected) position
of the particle at time i. Using the decomposition, he writes

1
4

X
i

X
p;q

d2pqV
i
p (V

i+1
q + V i�1q ) = 1

2

X
i

j xi+1 � xi j2; (6.16)

which is correct, and X
q

d2pqV
i
q =j xp � xi j2 : (6.17)

The last equation concerns both a notable and a crucial transformation from a lin-
ear function in V ip into a quadratic one in xi. Using (6.16) and (6.17), the free energy
(2.54) of the ENA with m = n and �1 = �2 = 1 is obtained. For reasons of conve-
nience, we here restate that free energy expression:

Een(x) =
�2
2

mX
i=1

j xi+1 � xi j2 ��1
�

nX
p=1

ln
mX
j=1

exp(��
2

2 j xp � xj j2): (6.18)
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Figure 6.1: An elucidation of the inequality in (6.19).

However, careful analysis shows that in generalX
q

d2pqV
i
q =

X
q

(xp � xq)
2V iq 6= j xp � xi j2 : (6.19)

The left-hand side of this inequality represents the expected sum of the distance
squares between city point p and the particle position at time i, while the right-
hand side represents the square of the distance between city point p and the ex-
pected particle position at time i. Under special conditions (e.g., if the constraints
are fulfilled), the inequality sign must be replaced by the equality sign, but in gen-
eral, the inequality holds (see also figure 6.1). ut

Objection 3. The free energy expressions (6.5) and (6.18) appear to have very dif-
ferent properties. As can be concluded from (6.4), any of the free energy expres-
sions (6.3) and (6.5) has the peculiar property that – whatever the value of the tem-
perature parameter – the stationary points are found at states where, on average,
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all strongly submitted constraints are automatically fulfilled. In other words, the
stationary points by themselves meet the constraints

8p :
X
i

V ip = 1; (6.20)

which signify that, on average, every city p is visited once. Moreover, the station-
ary points of (6.3) are often maxima (compare the results of chapter 4).

However, inspection of the free energy (6.18) yields a very different view: an anal-
ysis of that expression (see below) clarifies that each term on its own creates a set
of local minima, the first one trying to minimize the tour length, the second one
trying to force a valid solution. The current value of the temperature, which is a
weight factor of the second term, determines the overall effect of summation over
all these minima. E.g., it determines which of the two types will dominate. Thus,
a competition between feasibility and optimality takes place. This phenomenon is
remarkable, since the competition is similar to the one found by applying the clas-
sical penalty method. A difference from that classical method is that in the present
case – as in case of the Hopfield-Lagrange model – the weights of the penalty terms
change dynamically. It is surprising to see that in case of the ENA, the weights
(which all equal T = 1=�) decrease during the updating of the motion equations,
while in case of the Hopfield-Lagrange model, the weights (the multipliers) of-
ten increase. The given view on the ENA explains why we consider it a dynamic
penalty method. ut

We think the last observation corresponds to the theory of so-called deformable
templates [70, 90]. In that approach, the elastic net is considered as a ‘template
trajectory’ (corresponding to Simic’s particle trajectory), whose correct parame-
ters should be determined. These parameters are the ‘template coordinates’ (the
elastic net points) and the binary Potts spins Spj (where 8p :Pj Spj = 1). We note
that Spj = 1 has the meaning that net point j is assigned to template coordinate p.
The corresponding Hamiltonian equals

Edt(S; x) =
�2
2

X
i

j xi+1 � xi j2 +
X
p;j

Spj j xp � xj j2 : (6.21)

Thus, the energyEdt is a function of both binary decision functions Spj and of con-
tinuous template coordinates xi. The first term in (6.21) equals the first term in
the elastic net energy expression (6.18) and minimizes the tour length. The sec-
ond term enforces a match between each city and one of the elastic net points. In
other words, the energy (6.21) describes a penalty method. A statistical analysis of
Edt using the fact that the binary spins Spj are stochastic, yields the free energy ex-
pression (6.18) of the elastic net. The derivation is straightforward [70, 90], among
other things because Edt is a linear function in the Potts spins. By inspection of
both (6.18) and (6.21) we conclude that the first energy expression is derived from
the second by adding stochastic noise exclusively to the penalty terms of (6.21).
Therefore, one might say that the deformable template method applies stochastic
penalty terms, whose noise level depends on the current value of the decreasing
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temperature. This underpins, in yet another way, the idea that the ENA is based
on a dynamic penalty model: the elastic net model can considered to be a thermal
or noisy penalty model, where the current temperature (i.e., the current noise level)
controls the actual form and weight of the penalty terms.

6.2 Energy landscapes

6.2.1 Energy landscapes and elastic net forces

The ENA can be analyzed at two levels, namely at the level of the energy equa-
tion (6.18) by inspection of the energy surface, and at the level of the updating
rule (2.55) being

�xi = �2
�
(xi+1 � 2xi + xi�1) + �1

X
p

�p(i)(xp � xi); (6.22)

by an analysis of the various forces acting upon every net point. Afterwards, we
shall deal – in a direct mathematical way – with the properties of the energy equa-
tion on lowering the temperature. We adopt the parameter values of the algorithm
as given in subsection 2.2.

Let us start regarding the first, so-called elastic ring term (ert) of (6.18). It is
composed of a sum of m (the number of elastic net points) quadratic position dif-
ferences. Of course, this term is minimized if all points coincide at some place.
However, if the elastic net has a given length, this term is minimized whenever
all space-points are equidistant. In figure 6.2 and 6.3, the 2-dimensional energy

the minimum
6
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Figure 6.2: The elastic ring term for
point (0.5,0.5), d = 0:02.
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Figure 6.3: The elastic ring term for
point (0.6,0.5), d = 0:2.

landscape of one net point xi = (x; y) is shown at two different positions, once
using d = 0:02 as the mutual distance between neighbouring net points, the other
time taking d = 0:2. The shapes of the two landscapes do not differ much: in both
cases, the variable point is forced to the middle of the other two (temporally fixed)
points: in figure 6.2, these points are (0.49,0.5) and (0.51,0.5), in figure 6.3 they are
(0.5,0.5) and (0.7,0.5). At the level of the motion equation (6.22), we see by writing

xi+1 � 2xi + xi�1 = (xi+1 � xi) + (xi�1 � xi); (6.23)
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that every xi is forced to the midpoint between xi�1 and xi+1. Summarizing, if the
elastic ring term would be the only one, the ring points would become equidistant
and, eventually, would coincide at one position, somewhere in state space.

But the second so-called mapping term (mpt) of (6.18), makes its influence felt
too. It is composed of a sum of n logarithms, each logarithm having a sum of m
exponentials as its argument. Every exponential is a Gaussian function with one
local extremum, namely at the position where xp coincides with xj . We may con-
clude, that the total mapping term (with the minus sign) corresponds to a set of
‘pits’ in the energy landscape. The width and depth of these pits depend on two
factors, namely on the temperature and on the distance between a city and the
other elastic net points, especially the nearest elastic net point. Initially, when the
temperature T is relatively high, the attraction of elastic net points by every city
is more or less uniformly distributed. This corresponds to a wide and shallow
pit in the energy landscape around every city. The resulting, total energy land-

0 0.5 1 0
0.5

1

-1.4

-1.2

mpt(x,y)

Figure 6.4: The mapping term, ini-
tially at high tempera-
ture.
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Figure 6.5: The mapping term, in
case of no feasibility.

scape shelves slightly and is lowest in regions with a high city density. This phe-
nomenon is quite independent of the position of the elastic net points in the unit
square. A simple example is given in figure 6.4: again, the energy landscape of
one of five elastic net points is shown, while the positions of the city points are
(0.2,0.63), (0.8,0.63), (0.65,0.37), (0.37,0.37) and (0.33,0.37). The city positions will
be kept the same in the next examples and can be found in figure 6.7. As can be
seen in figure 6.4, the lowest part of the energy landscape of the mapping term
is found around the last two, closely situated, cities. Experiments show, that the
positions of the other four elastic net points do not matter much, i.e., whatever
these positions are, in all cases approximately the same energy surface is found,
provided that the initially high temperature T = 0:2 is used.

On lowering the temperature, a city will attract more and more nearby net
points and fewer and fewer distant net points because, in general, the pit in the
energy landscape around a city becomes narrower. However, the second factor
plays an important part. If a city remains without a nearby elastic net point, the
width of the pit shrinks only slowly and the depth even grows: apparently, the
city persists in trying to catch a not too remote elastic net point. In figure 6.5, an
example is given at T = 0:027, which is an almost final temperature of the algo-
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rithm. The four net points are still chosen around the center of the unit square, far
away from any city. The basins of attraction around every city are clearly present.

If, on the other hand, a city has been able to (almost) catch a net point, the sur-
rounding pit in the energy landscape will become very narrow and shallow. In
figure 6.6, an example is given with, once more, four temporally fixed net points.
Again, T = 0:027. The position of one net point coincides exactly with a city, the
position of a second one is chosen close to a city, a third net point is situated on
a somewhat larger distance from another city, and the position of the fourth net
point is precisely in the middle between two close city points. The city point and
net point positions are shown in figure 6.7. The energy landscape in figure 6.6
shows narrow and shallow pits around cities: the smaller the distance of the most
neighbouring elastic net point is, the narrower and shallower the pit. The figure
also demonstrates an unpleasant phenomenon concerning the elastic net point in
the middle of the two close cities. Both cities seem to consider themselves owner
of that elastic net point. Consequently, the surrounding energy landscape of the
two cities will generally not be able to catch another elastic net point, so, in those
circumstances, the system persists in non-feasibility.
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mpt(x,y)

Figure 6.6: The mapping term, in
case of an almost feasible
solution.
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Figure 6.7: Net and city point posi-
tions.

6.2.2 The total energy landscape

Of course, we should analyze the combined effect of the elastic ring and the map-
ping term. For that purpose, we selected some, more or less representative exam-
ples, starting with an initial elastic net situated around the center of the unit square
at T = 0:2. There, the energy landscape appears to resemble that of figure 6.4
(as expected): the mapping term dominates, pushing the elastic net to regions
of high city density. In practice, the cities are distributed over the unit square,
resulting in a stretching out of the net. In the background, the elastic net term
keeps the net more or less together. On lowering the temperature a little bit until
T = 0:15, the mapping term becomes more important as long as feasibility has
not been reached. In figure 6.8, the energy landscape of the free elastic net point is
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Figure 6.8: The total energy land-
scape, an initial state at
T = 0:15.
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Figure 6.9: The total energy land-
scape, an intermediate
state at T = 0:08.

shown under the assumption that the initial configuration of all other points have
remained the same. It is clear that the landscape has become somewhat steeper.
Thus, the system is trying to reach feasibility with a bit more strength. Now sup-
posing the more realistic scenario that the elastic net has stretched out somewhat
(with elastic net positions (0.57,0.44), (0.43,0.44), (0.35,0.56), (0.65,0.56), while the
‘free’ elastic net point is supposed to be somewhere between the last two given
positions). Then, more details in the energy landscape are apparent. In figure 6.9,
the energy landscape is shown at T = 0:08.

Next, we show two potential, nearly final, states. In figure 6.10, a solution is
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Figure 6.10: The total energy land-
scape, a non-feasible
state in the end.
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Figure 6.11: The total energy land-
scape, a feasible state in
the end.

shown, where all cities except one have caught an elastic net point. If the remain-
ing net point is not too far away from the non-visited city, it can still be attracted by
it, otherwise this city will never be visited. This shows, that a too rapid lowering
of the temperature may lead to a non-valid solution, because a further lowering
of the temperature will lead to a further narrowing of the energy pit of figure 6.10.
Note also that in this case, the pits corresponding to the elastic ring term are not
visible: comparatively, they are too small. In figure 6.11, an almost feasible solu-
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tion is shown, where the positions of three net points coincide with the position of
a city, while a fourth elastic net point is precisely in the middle between the two
close cities. Because an almost feasible solution has been reached, the mapping
term becomes relatively small (corresponding to some small pits), and the remain-
ing elastic net point is forced to the middle of its neighbors. The final state will be
equidistant, but not feasible! The example shows clearly that in case of (almost)
feasibility the influence of the mapping term becomes small. At the same time,
this term is capable to maintain this (almost) feasibility. Under these conditions,
the algorithm tries to realize equidistance.

6.2.3 Non-feasibility and not annealing

The analysis of the previous subsection reveals that it is possible to end up in a
non-feasible solution for at least two reasons1:

� The parameter T may be lowered too rapidly yielding a non-feasible solu-
tion, where one or more cities have not ‘caught’ any elastic point.

� Two close cities may have received the same elastic net point as the nearest
one.

The determination of the optimal schedule for decreasing T is often mentioned in
literature and is often associated with ‘optimal simulated annealing’. We wish to
emphasize here, that the similarity is less than would appear. In simulated anneal-
ing [2], the temperature should be decreased carefully in order to escape from local
minima. Here, this lowering should be done carefully in order to gain and keep
on to a valid solution, in other words, to end up in a local (constrained) minimum!

Just like any other penalty method, the ENA tries to fulfill two competing
requirements: in this case these are minimal equidistance and feasibility (a tour
through all city points). To be able to fulfill both requirements, it is generally nec-
essary to use more elastic net points than city points. This is further explained
in figure 6.12. It should be clear that, the more diversity exists in the shortest dis-
tances between cities, the more elastic net points are needed 2. Using a large num-
ber of elastic net points gives rise to the additional drawback of increasing com-
putation time. Finally, we note that the property of equidistance – which is a con-
sequence of the quadratic distance measure of the ENA – is not at all a necessary
qualification of the final solution. The above-mentioned observations that (a) a
non-feasible solution might be found and (b) the ENA pursues equidistance, mo-
tivated us to investigate alternative elastic net algorithms.

1Another non-feasibility is a so-called spike [78]. There, one city has caught two non-neighbouring
beads of the elastic ring.

2We already mentioned in section 2.6 that usually m and n are chosen conform m = 2:5n.
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Figure 6.12: To realize both feasibility and equidistance many net
points are needed.

6.3 Alternative elastic networks

6.3.1 A non-equidistant elastic net algorithm

In order to get rid of the equidistance property, we only need to change the first
term of the original energy expression (6.18). Here, a linear distance function is
chosen3, whose minimal constrained length equals by definition the global mini-
mal tour length. The new energy function is:

Elin(x) = �2

X
i

j xi+1 � xi j ��1
�

X
p

ln
X
j

exp(��
2

2 j xp � xj j2): (6.24)

Applying gradient descent, the corresponding motion equations are found [35]:

�xi = �2
�

�
xi+1 � xi

j xi+1 � xi j
�
+

�
xi�1 � xi

j xi�1 � xi j
�
+ �1

X
p

�p(i)(xp � xi); (6.25)

where again, the time-step �t equals the current temperature. We notice that all
elastic net forces are normalized now. Moreover, if 9i : xi+1 = xi, we get into trou-
ble4 . As self-evident analysis [35] shows, the elastic net forces try to push elastic
net points onto a straight line, just like in the original ENA. However, once a net
point is situated at any point on the straight line between its neighbouring net
points, it no longer feels any elastic net force since the resulting force Fres equals
zero. This is simply caused by the normalization of the elastic net forces: see figure
6.13. This means that equidistance is no longer pursued. Consequently, elastic net
points will have more freedom in moving towards cities. It is therefore hoped that
application of the non-equidistant elastic net algorithm (NENA) will (a) nearly al-
ways yield feasible solutions (of high quality), if the same number of elastic net
points is used as in the original ENA and-or (b) often yield feasible solutions too,
if a smaller number of elastic net points is chosen5. Stated in more general terms,
it is hoped that the new algorithm will yield valid solutions more easily.

3At some places in the literature [77, 90], a linear distance measure is suggested, but nowhere did
we find an elaborated implementation of this idea.

4In practice fortunately, this never occurred.
5It is even conjectured [77] that by using a linear distance measure, the number of elastic net points

could be equal to the number of cities.
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Figure 6.13: The new elastic net forces: general case (left), 3 points in line (right).

Since the elastic net forces are normalized by the new algorithm (those of the old
one are not), a tuning problem arises. To solve this problem, the following simple
approach is chosen: in the motion equations (6.25), all elastic net forces will be
multiplied by the same factor

A(x) = 1
m

mX
1

j xi+1 � xi j; (6.26)

which represents the average distance between two elastic net points. Thus, the
average elastic net force is roughly equal to the average in the original algorithm,
and the final updating rule becomes:

�xi = �2
�
A(x)

�
xi+1 � xi

j xi+1 � xi j +
xi�1 � xi

j xi�1 � xi j
�
+ �1

X
p

�p(i)(xp � xi); (6.27)

where the values �1; �2 and � are chosen conform the original ENA.

6.3.2 The hybrid approach

A fundamental problem of the ENA is, that it might lead to non-feasible solu-
tions due to the fact that the elastic net points adhere to equidistance. Moreover,
equidistance is not required for the final solution of the elastic net (although it
might be very useful in the initial phase of the algorithm in order to realize a
smooth stretching out of the elastic ring). A fundamental problem of NENA is,
that net points may become too lumpy (see the next section), which at least for
larger problem instances, leads to non-feasibility and a lower quality of the sub-
sequent solutions. Contemplating these considerations we tried to merge the two
algorithms into a hybrid one retaining the best properties of both. The approach
of the hybrid elastic net algorithm (HENA) is simple: the algorithm starts using
ENA and, after a certain number of iterations, switches to NENA. The first phase
is used in order to get a balanced stretching of the elastic net which is hoped to lead
to solutions of high quality, the second phase is used in order to try to guarantee
feasibility in the end. A consequence of this hybrid approach is the introduction
of two new parameters. First, we have to decide at what time the switch should
take place, and then, we have to choose the starting temperature after the switch.
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6.4 Computational results

We now describe some of the experimental results as obtained with the NENA
and the HENA, and compare them with computational results found using the
original ENA.

6.4.1 A small problem instance

We start by using the configuration of cities as described in the theoretical analysis
of section 4 (the 5 cities are situated as given in figure 6.7). In all cases, we used the
following initialization of the elastic net: elastic net points are put in a small ring
in the center of the state space, where the position of every net point is slightly
randomized.

Using 5, 7, 10 or 12 elastic net points, the ENA produced only non-feasible so-
lutions: in all experiments, one elastic net point is found in the middle between
the two closely situated city points. The other 3 cities are always visited, while
all other net points are more or less spread equidistantly. However, using 15 elas-
tic net points, the optimal and feasible solution is always found: apparently, the
number of elastic net points is now large enough to guarantee both feasibility and
optimality.

Using 5 elastic net points, the NENA nearly always produced a non-feasible
solution, but sometimes the optimal, feasible one. A gradual increase of the num-
ber of elastic net points results into a rise of the percentage of optimal solutions
found. Using only 10 elastic net points yields a 100% score. An inspection of the
final results reveals that the elastic net points become lumpy: they appear to come
together around a city, which is of course, a consequence of their increased free-
dom. The number of net points per city depends the initialization as well as the
location of the city.

We conclude that for this small problem instance the NENA produces better
results than the ENA, or, stated more precisely, using a smaller number of elas-
tic net points the NENA finds the the same optimal solution as the original ENA.
The described experimental results are completely consonant with the theoretical
conjectures of section 4.

6.4.2 Larger problem instances

Using a 15-city-problem, we had the similar experiences: it is easier to arrive at
a feasible solution using the NENA. E.g., using 30 elastic net points, the NENA
always yielded the same solution (namely the best solution found with both the
ENA and the NENA), while the ENA sometimes yielded that solution, and some-
times a non-valid one.

However, the picture starts to change, if 30-city problem instances are cho-
sen. As a rule, both algorithms are equally disposed to finding a valid solu-
tion, but another phenomenon turns up: the quality of the solutions found by
the original ENA was generally better. Inspection of the solutions found by the
NENA, demonstrated a strong lumping effect. The lumping can be so strong that
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sometimes a city is left out completely. Especially cities which are situated at a
point where the final tour bends substantially, may be overlooked. Apparently,
by disregarding the property of equidistance, a new problem has originated. Re-
evaluating, we conclude that the equidistance property of the ENA has an impor-
tant contribution towards finding solutions of high quality, i.e., short tours.

At this point, the hybrid approach of HENA comes to mind. Because for small
problem instances the NENA works better than the ENA, we only tried larger
problem instances. Unfortunately, in our experiments the HENA appears to be
slightly worse than the original ENA both in relation to the quality of the solu-
tion and in relation to feasibility. E.g., taking a 100-city problem, the ENA usually
yielded a solution where 99 of the 100 cities are visited, while in case if the HENA,
on average 98 to 99 cities are visited. Moreover, the encountered tour length using
the ENA is, on average, slightly better than the tour length found by the HENA.
Trying larger problem instances, we were unable to find parameters of the HENA,
which yield better solutions than the original ENA or which guarantee feasibility
of solutions.



Chapter 7

Conclusions, discussions, and
outlook

In this final chapter, we first sum up our results, we then discuss the most impor-
tant ones (especially in relation to the research objectives as mentioned in chap-
ter 1), and finally, we dwell on what is left and can be grappled with in future re-
search.

7.1 A list of results

We start by calling to mind that the results concerning the Hopfield models gener-
ally also hold for the relaxation phase of recurrent neural networks with learning
capabilities. Assembling several outcomes, we arrive at the following list:

� The unconstrained stochastic binary Hopfield model, as well as the one con-
strained by equation (4.1), can, in mean field approximation, be described by
a corresponding continuous Hopfield model.

In both cases, two approximating free energy expressions have been found
whose stationary points coincide. However, the types (minimum or maxi-
mum) of these stationary points are not necessarily identical: this striking
phenomenon appears to be connected to the structure of the given problem
instance, i.e., to the weight values wij .

One of the two mean field free energy expressions can be written in the stan-
dard form (2.8), known from thermodynamics, for either of the models. This
form yields an explicit approximating formula for the entropy and therefore
for the effect of noise (thermal fluctuations) in the system at the same time.
In general, the effect of noise is a displacement of solutions towards the in-
terior.

Conditions that guarantee the stability of various motion equations of both
models have been given, some of which are easy, and some of which may be
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hard to check. They appear to depend on either the transfer function chosen
or the properties of the matrix (wij ).

The apotheosis of chapters 3 and 4 is the ‘most general framework’ including
the corresponding stability theorem. Provided certain general mathematical
conditions are fulfilled, the generalized continuous Hopfield networks can
model almost arbitrary energy expressions and can, in principle, incorpo-
rate several types of constraints. The corresponding free energy expressions
are functions in both the input and the output of all neurons.

The experimental results did not falsify the theoretical conjectures: simple
(quadratic and non-quadratic) optimization problems and ‘purely combina-
torial’ ones have been resolved successfully. In relation to the required com-
putation time, it appeared to be advantageous to build-in the constraints as
much as possible (instead of applying a penalty approach).

However, a startling outcome of certain experiments is that there exist for-
mulations of the built-in constraints that destroy the usual statistical me-
chanical interpretation, that is, the usual mean field approximation where
the energy of the continuous Hopfield model can be written as a free energy
expression of the form (2.8). Stability may still occur while, at the same time,
neither the ordinary solutions at high temperatures, nor the usual approxi-
mation of the original cost (energy) function at low temperatures, are found.

� A new potential Lyapunov function for both the unconstrained and the con-
strained continuous Hopfield-Lagrange model has been presented. In the
unconstrained case, all constraints can be grappled with using Lagrangian
multipliers. In the constrained case, part of the constraints are tackled this
way whereas the other constraints are built-in directly (or, if desired, han-
dled by means of penalty terms). The Lyapunov function may serve as a
tool to prove stability of the corresponding differential equations, although
the analysis of the dynamic conditions may be hard.

Quadratic constraints and others that meet the penalty terms condition
(2.37) generally guarantee stability of the Hopfield-Lagrange model, at the
same time degenerating the model to a dynamic penalty model. In these
cases, the multiplier values grow during the updating of the differential
equations. If the multipliers are smaller than a set of critical values, the
model is unstable. Otherwise, the system is stable. The transition from un-
stable to a stable behavior in some respect resembles a phase transition in
statistical mechanics.

If the formulation of the constraints is such that, in spite of the presence of
thermal noise in the system, solutions are situated in corner points of the hy-
percube [0; 1]n, we call these constraints ‘hard’. The nasty property of this
type of constraints is that the solution values of the Ui’s equal �1. This
problem can be resolved by explicitly relaxing the constraints in such a way
that the constrained solutions are slightly dragged towards the interior.

Various practical problems have been resolved using the Hopfield-Lagrange
model. Simple quadratic optimization problems subject to linear constraints
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were always solved correctly. In other problems, linear constraints often re-
sulted in instability. Alternatively, using quadratic constraints, the exper-
iments with the weighted matching problem always yielded solutions of
‘good’ quality, and even the travelling salesman problem could be resolved
in a ‘reasonable’ way. However, the scale of the last two problems was still
rather small, while in case of the TSP, the computation time of the (sequen-
tial) simulation could rise up to several hours. In general, the larger the
number of multipliers is, the better the quality of the solutions appears to
be. We further noticed that in case of the TSP, the (partially) strong approach
using built-in constraints yielded solutions of a worse quality than the soft
approach using only multipliers.

� Contrary to a well-known conclusion in the technical literature [77], the elas-
tic net algorithm can not be derived from a constrained stochastic Hopfield
network with Hamiltonian (6.1). Instead, the ENA should be considered a
type of dynamic penalty method (which we have termed a thermal or noisy
penalty method) where, unlike the degenerating Hopfield-Lagrange model,
the weight values of the penalty terms gradually decrease. The lowering of
the temperature should be viewed as a tuning process between the cost func-
tion and the penalty terms, unlike optimal simulated annealing.

Trying a non-equidistant elastic net algorithm with a correct distance mea-
sure, as well as a hybrid algorithm, only small problem instances yielded
better solutions suggesting that the quadratic distance measure of the orig-
inal ENA is an essential ingredient.

7.2 Discussion

Summarizing the previous list, we hold that the various theorems on generalized
Hopfield models, the stability theorems on the Hopfield-Lagrange models, and
the notion and existence of various dynamic penalty models (both in case of the
Hopfield-Lagrange and of the elastic neural networks) are central points of this
thesis.

We now look more precisely at how far our ends have been achieved. The main
objectives of explaining the relaxation dynamics and of generalizing existing theo-
ries have certainly been achieved in some measure. Various theorems concerning
the (un)constrained continuous Hopfield models as well as Hopfield-Lagrange
models have been derived which give general conditions that guarantee stabil-
ity. Besides, the statistical mechanical interpretation of the continuous Hopfield
models discussed, elucidates their working and suggests the application of mean
field annealing. In relation to the Hopfield-Lagrange model, the unmasking of the
effect of quadratic constraints (guaranteeing stability and showing behavior like
dynamic penalty terms) is essential. The exposure of the elastic net algorithm as
a noisy penalty method is an extension of this ‘dynamic penalty view’.

Furthermore, the discovery of the most general framework leads to increased
freedom in configuring continuous Hopfield models. Given a formulation of the
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problem at hand, one can choose between various updating rules, various trans-
fer functions, various formulations of the constraints, and even various models:
constraints may be built-in or otherwise be tackled using Lagrange multipliers or
(dynamic) penalty terms. This can be exploited in applications (see also the crucial
observations at the end of section 4.3.3). It is quite interesting that very recently
and independently of the analysis as given in this thesis, articles have been pub-
lished [24, 80], which, in fact, can be considered as primary explorations of the
practical capabilities of the most general framework.

On the other hand, certain unanswered, though quite general, theoretical
questions still remain. E.g., we could ask ourselves whether stochastic Hopfield
neural networks can also be generalized to the most general framework of this
thesis. Considering the general framework in relation to continuous Hopfield
models, it is very important to discover the precise conditions on the built-in con-
straints which assert the statistical mechanical interpretation. It is also desirable to
find out which general classes of cost functions, subject to several (non-)linear con-
straints, guarantee stability of the Hopfield-Lagrange model. Last but not least, it
is all-important to investigate in which ways domain knowledge of problems can
be systematically incorporated in recurrent neural networks.

The very last observation also stems from the study of the relationship between
Hopfield and elastic neural networks, whose explanation fulfills one of the sec-
ondary purposes of this thesis. This relationship has become quite clear and the
elastic net itself beautifully shows how domain knowledge can be incorporated in
a recurrent neural network, yielding a comparatively excellent algorithm.

Finally, we consider the models from the viewpoint of applicability, which
refers to the other secondary objective of this thesis. First of all, we note that the
afore-mentioned freedom in configuring the neural networks at hand, is also a
drawback, since there are so many choices to be made. At the same time, it is of-
ten quite unclear in advance, which choice will yield the best results. Likewise,
the analytical verification of the conditions that guarantee stability (i.e., the defi-
nite positiveness of dynamically changing matrices) might be a tough task.

We further realize that our experimental tests done so far do not yield the
decisive answer of whether neural networks can always adequately be applied
to solve combinatorial optimization problems. Evaluating our computational re-
sults and those known from the technical literature, it seems true that, for ‘purely
combinatorial’ problems, ANNs work fine. However, if optimization joins in the
game, a high quality of the constrained solutions is not guaranteed. In general,
we observed the following, maybe not too surprising tendency: the more difficult
the problems are (e.g., those from the class of P compared to those from the class
of NP-hard problems), the worse is the quality of the encountered solutions and
the longer is the required computation time. In cases of difficult problems, a tai-
lored approach where domain knowledge is applied seems to be necessary, as is a
lot of ‘tuning’ work. If seemingly small adaptations of a well-balanced algorithm
like the elastic net algorithm are tried (e.g., the discussed non-equidistance and the
hybrid elastic net algorithms), new tuning work is immediately necessary and the
solutions found may be of lesser quality. This demonstrates the high sensitivity of
the adjustable parameters of these tailored algorithms.
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We finish this section by observing that it is always an option to use dedicated
hardware or specially tailored software in order to implement successful applica-
tions which require a lot of computation time. It is hoped that these implementa-
tions can be parallelized in order to speed up performance.

7.3 Outlook

In this section, we try to list a number of questions that beg for an answer. We first
take up the theoretical ones.

� Which combinations of new transfer functions1 gi and summation functions
hi fit in the most general framework of chapter 4 and turn out to yield stable
models?

� In which ways can the general free energy Fmgf of the most general frame-
work be interpreted, or, stated more precisely, which general conditions
should hold for the transfer functions Vi = gi(U) such that the continuous
Hopfield model can be considered a mean field approximation of a corre-
sponding stochastic model?

� Which general conditions, especially those relating to linear constraints, can
guarantee stability of the Hopfield-Lagrange model?

� Which theoretical improvements of constrained Hopfield networks can be
learned from the ‘deformable template’ approach, or, stating this more gen-
erally, in which systematic ways can domain knowledge be incorporated in
Hopfield neural nets?

� Can the effect of the application of mean field annealing be better under-
stood, e.g., by an energy surface analysis, as has been done for the elastic
net algorithm?

� Which similarities and differences exist between an iterative updating strat-
egy like (2.29) and the continuous ones like (2.30) as studied in this thesis?

� Can stochastic Hopfield neural networks, i.e. Boltzmann machines, also be
generalized to the most general framework?

In the practical field, the following questions beg for an answer:

� Considering the amounts of computation time and the qualities of solutions,
what is the relation between the results found by stochastic Hopfield models
and those found by continuous ones2?

� Applying either continuous or stochastic Hopfield models, which annealing
schemes can best improve the quality of solutions of hard problems?

1Inspiration can be gleaned from the literature, e.g., from [82].
2As mentioned above, certain results have already been reported in the technical literature, e.g., in

[68].
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� Which transfer functions gi and which summation functions hi work well in
practice?

� Which (combinations of) ways to grapple with a set of given constraints (i.e,
those using penalty terms, those which build them in, and those which ap-
ply multipliers) work best?

� Which alternative dynamic penalty models (including the noisy penalty
models) can improve the application of Hopfield and allied networks?

� Can the performance of the non-equidistant elastic algorithms be further im-
proved by a better tuning of the parameters involved?

� By means of which hardware and/or software is it possible to speed up the
calculations of the models discussed in this thesis?

7.4 In conclusion

We finish this thesis by stating that there is still a lot of work to do in order to un-
derstand in detail the behavior of the Hopfield(-Lagrange) models and in order
to gain a lucid understanding of which type of these models should be chosen to
solve a given combinatorial optimization problem in an adequate way. Several
important insights relating to these questions have been gained by the work re-
ported in this thesis. And although certain theoretical questions continue to exist,
and beg to be resolved, it seems to be appropriate to shift, at the same time, our
attention towards a more practical approach. This will probably yield an even
better insight in how the models behave in practice, which, in fact, is one of the
all-important motives to study these models. It is hoped that this practical ap-
proach will also produce new, indispensable inspiration as well as intuition for a
refreshed theoretical approach in times to come.
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Lagrange multipliers

The Lagrange1 multiplier method is a method for analyzing constrained optimiza-
tion problems defined by

minimize f(x)

subject to : C�(x) = 0; � = 1; : : : ;m; (A.1)

where f(x) is called the objective function, x = (x1; x2; : : : ; xn), and the equa-
tions C�(x) = 0 are m side conditions or constraints. The Lagrangian function L is
defined by a linear combination of the objective function f and the m constraint
functions C� conform

L(x; �) = f(x) +
X
�

��C�(x); (A.2)

where � = (�1; �2; : : : ; �m) and where the �i’s are called Lagrange multipliers. The
class of functions whose partial derivatives are continuous we shall denote by C1.
The following theorem gives a necessary condition for f to have a local extremum
subject to the constraints (A.1):

Theorem A.1. Let f 2 C1 and all functions C� 2 C1 be real functions on an open set T
of Rn. Let W be the subset of T such that x 2 W ) 8� : C�(x) = 0. Assume further
thatm < n and that somem�m submatrix of the Jacobian associated with the constraint
functions C� is nonsingular at x0 2W , that is, we assume that the following Jacobian is
nonsingular at x0

J(x0) =

0
B@

C1
1 (x

0) C2
1 (x

0) : : : Cm1 (x0)
...

...
...

C1
m(x0) C2

m(x
0) : : : Cmm (x0)

1
CA (A.3)

1Joseph-Louis Lagrange (1736–1813) worked in many branches of both mathematics and physics.
He mentioned the multiplier method in a letter to Euler in 1755, where he applied it to infinite-
dimensional problems. In 1797, his book ‘Theory of analytic functions’ appeared containing the ex-
tension to finite-dimensional problems (historical remarks from [83]).
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where Cj�(x
0) = @C�(x

0)=@xj ; j 2 f1; : : : ; ng.
If f assumes a local extremum at x0 2 W , then there exist real and unique numbers
�01; : : : ; �

0
m such that the Lagrangian L(x; �) has a critical point in (x0; �0).

The proof of this theorem [8] rests on the ‘implicit function theorem’. The con-
dition of the nonsingularity of the defined Jacobian matrix makes the vector �0

unique. The theorem can also be extended by giving sufficient conditions for f to
have a local constrained minimum or a local constrained maximum.
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Dynamic systems

The theory of dynamic systems [8, 54] refers to the analysis of systems in the
course of time. Here, we confine ourselves to systems which are described by a
set of differential or, respectively, a set of difference equations

_x = f(x; u); (B.1)
xt+1 = f(xt; ut); (B.2)

where x = (x1; : : : ; xn) is called the state of the system, where u = (u1; : : : ; ur) is
the control or input of the system, and where f = (f1; : : : ; fn) is a function vector
with all fi (non)linear functions in x and u. Both x and u are functions of time
(t � 0). For fixed u(t), the system is said to be free or unforced. We assume that
there exists a function x(t) which satisfies (B.1) or (B.2) for t � 0 starting at an
initial state x(0) = x0. Such a function is called a solution, motion, or trajectory.
A state of the system is called an equilibrium state xe if 8t : x(t) = xe.

We often want to know whether a (free) dynamic system is asymptotically stable,
that is, we want to know under which conditions the system eventually, that is
for t ! 1, converges to an equilibrium state, even if we do not have knowledge
of the trajectory. Here, the techniques using a Lyapunov1 function L appear on
the scene. We confine ourselves to free systems, which implies that x is a vector
function only of time. We start considering the continuous case (B.1), where C1 is
defined as in appendix A.

Theorem B.1. Assume there exists a scalar functionL(x) 2 C1, bounded below by a real
constant B such that

L(x)

�
= B if x = xe
> B otherwise, (B.3)

and suppose the time derivative _L of L along a solution of the system fulfills

8x 6= xe : _L(x(t)) < 0; (B.4)

1The approach given here is Lyapunov’s direct or second method for obtaining stability information
without explicit knowledge of the solutions. His first method involves an explicit representation of the
solutions. The approach of Lyapunov (1857–1918) was published in 1892 [8].



116 Dynamic systems

then the equilibrium state xe is a locally asymptotically stable point.

The precise proof of the theorem as well as rigorous definitions of the concepts of
local and global (asymptotic) stability can be found in [8]. Roughly, the idea of the
proof is that when time advances the function L strictly decreases until, eventu-
ally, an equilibrium state is reached. We further note that the monotonicity of L is
a sufficient, but not a necessary condition for asymptotic stability [54]. This implies
that inability to generate a Lyapunov function proves nothing.

A slightly weaker form of the given theorem is obtained by replacing the strict
inequality (B.4) by

8x 6= xe : _L(x(t)) � 0: (B.5)

In this case, the system is simply called stable. Unlike for the asymptotically stable
systems, the solution of a stable system need not reach the equilibrium point, but
may hover arbitrary close to it [54].

For linear systems, there exists an explicit method for obtaining a Lyapunov
function, where a certain linear system of equations should be resolved [8]. For
nonlinear systems, such an explicit method does not exist. In case of studying
physical systems, there is often an energy function which is minimized and which,
at the same time, plays the part of a Lyapunov function.

The given theorem also holds for difference equation systems (B.2), provided
we make some obvious modifications such as replacing integrals with sums , _x
with �x=�t, and making the continuous time t a discrete one. The Lyapunov
function is discrete too and is decreased step by step by the corresponding up-
dating rule.
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Gradient descent

A very well-known method for finding a local extremum of a function f(x) is the
gradient method, where a gradient descent is applied in order to find a minimum,
and a gradient ascent to find a maximum. Confining ourselves to the first one,
the idea is to slide downhill from a certain starting point along the n-dimensional
surface of the graphic of f(x); x 2 R

n . The gradient descent rule equals [44]

_xi = �� @f
@xi

; (C.1)

where� is a positive constant. Thus, we slide downhill with a ‘speed’ proportional
to the slope of the hill.

Supposing that f(x) 2 C1 (C1 defined as in appendix A) and that f(x) is
bounded below, asymptotic stability of (C.1) can be proven easily using the theory
of appendix B: f(x) itself is a Lyapunov function since

_f(x(t)) =
X
i

@f

@xi
_xi = ��

X
i

(
@f

@xi
)2
�

= 0 if 8i : @f=@xi = 0
< 0 otherwise, (C.2)

As long as at least one _xi 6= 0, the way down continues until finally all _xi = 0 and
a local stationary point, defined by 8i : @f=@xi = 0, has been reached. In general,
this stationary point is a local minimum.
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Appendix D

Lemmas and their proofs

Lemma 1. If A is a symmetric and nonsingular matrix then

exp(�2x
TAx) =

R
exp(��

2�
TA�1�� ��Tx)

Q
i d�iR

exp(��
2�

TA�1�)
Q
i d�i

; (D.1)

where the n-fold integrals on the right-hand side are improper integrals defined over Rn .

Proof. The lemma is a generalization of the following trick

exp(�2x
2) =

R1
1

exp(��
2�

2 � ��x)d�R1
1 exp(��

2�
2)d�

; (D.2)

This trick can simply be derived by elaborating the integral of the numerator of
the right-hand side of (D.2). Applying it with

xy =

�
x+ y

2

�2

�
�
x� y

2

�2

;

and knowing that Z
e�d�

Z
e d =

Z
e�e d�d ;

we can write:

exp(�2xy) =
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exp[��
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;

where ~� = ��  and ~ = �+  . If x and y are n-dimensional vectors and if A is
an n� n-matrix, we can generalize this result to

exp(�2x
TAy) =

R
exp[��

2�
T � �

2 (�
Tx+  TAy)]d�d R

exp[��
2�

T ]d�d 
;
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where � and  are n-dimensional vectors too. If the matrix A is symmetric and
nonsingular, then the substitution  ! A�1 implies that

 TAy ! (A�1 )TAy =  T (A�1)TAy =  T y:

Applying this, we find

exp(�2x
TAy) =

R
exp[��

2�
TA�1 � �

2 (�
Tx+  T y)]d�d R

exp[��
2�

TA�1 ]d�d 
:

By finally substituting y ! x and writing d� =
Q
i d�i, the theorem is found. ut

Lemma 2. If the integrand in both the numerator and the denumerator is expanded in a
Taylor series expansion around its saddle point, then the following equation holdsR

exp(��
2�

TA�1�� ��Tx)
Q
i d�iR

exp(��
2�

TA�1�)
Q
i d�i

= exp(�2x
TAx): (D.3)

Proof. We only furnish a detailed proof in the one-dimensional case. Since � is a
scaling factor, we can simply equalize it to one without effecting the course of the
proof. Under these conditions, we merely have to proof thatR1

�1
exp(��2

2a � �x)d�R1
�1

exp(��2

2a )d�
= exp( 12ax

2):

Taking fx(�) = exp(��2

2a � �x), the saddle point �̂ = �ax of the numerator is
found by solving dfx=d� = 0. Application of a Taylor series expansion around
this saddle point yields
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This completes the proof of the one-dimensional case. In a similar way, by appli-
cation of an n-dimensional Taylor expansion, the correctness of equation (D.3) can
be proven. ut

Note. Since equations (D.1) and (D.3) coincide, lemma 2 seems to be superflu-
ous: conform lemma 1, the Taylor series expansion as applied in the proof of
lemma 2, should yield equation (D.3). The reason to yet furnish this proof is to
explain the difference between this approach (yielding an exact result) and that of
lemma 4, where, for mathematical complications, the Taylor series expansion is
cut off (yielding an approximating result).

Lemma 3. If S passes through all 2n states from (0; 0; : : : ; 0) to (1; 1; : : : ; 1), thenX
S

exp(�
X
i

Si�i) = exp(
X
i

ln(1 + exp(��i))): (D.4)

Proof. The proof can be done by induction on the number of neurons Si. For one
Si, we findX

S

exp(�
X
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X
S
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= 1 + exp(��1) = exp(ln(1 + exp(��1))):

Suppose the lemma is true for (n� 1) neurons Si, then we can write
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= exp(
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This completes the proof. ut

Lemma 4. A first order saddle point approximation in the numerator and denumerator
(both regarded as a function in �) of
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yields

Vi � �@E(
~�; I)

@Ii
:

Proof. The proof can be done in the same way of that of lemma 2. However, this
time the Taylor expansion is cut off after the second term conform

E(�; I) = E(~�; I) +
X
i

@E(~�; I)
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(�� ~�) +O(�2) � E(~�; I):

Using this approximation and a similar one in the denumerator, we find that
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Substituting this result in (2.14), we find
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This completes the proof. ut

Lemma 5. If

Vi =
1

1 + exp(�Ui) ; (D.5)

then
ln (1 + exp(Ui)) = �Vi lnVi � (1� Vi) ln(1� Vi) + ViUi:

Proof. Equation (D.5) implies that

1� Vi =
1

1 + exp(Ui)
: (D.6)

Using (D.5) and (D.6), we can proof the lemma directly:
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ut
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Lemma 6. If S passes through all n states from (1; 0; : : : ; 0), (0; 1; : : : ; 0), : : : , to
(0; 0; : : : ; 1), then X

S

exp(�
X
i

Si�i) = exp(ln
X
i

exp(��i));

Proof. The proof is almost trivial:
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Proof. From equation (D.7) it follows that
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Rewriting this equation, the lemma is found immediately. ut

Lemma 8. If (D.7) holds using the plus sign, if l � 2, and if l 6= i, then
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The second result is found in the same way. Taking l 6= i we find

@Vi
@Ul

=
0� exp (�Ui): exp (�Ul):�

(
P
l exp (�Ul))

2
= ��ViVl < 0:



Bibliography

[1] E.H.L. Aarts and J.K. Lenstra, editors. Local Search in Combinatorial Optimization. John
Wiley & Sons, to appear in 1996.

[2] E.H.L. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines, A Stochastic Ap-
proach to Combinatorial Optimization and Neural Computing. John Wiley & Sons, 1989.

[3] D.H. Ackley, G.F. Hinton, and T.J. Sejnowski. A Learning Algorithm for Boltzmann
Machines. Cognitive Science 9, 147–169, 1985.

[4] M. Alonso and E.J. Finn. Fundamentele Natuurkunde, Deel 6: Statistische Fysica. Elsevier,
1979.
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Index

A
AI, see artificial intelligence
ANN, see artificial neural network
annealing, 21, 22, 43, 102

mean field, 32, 43, 51, 58, 80, 92, 109,
111

simulated, 22, 26, 29, 30, 102
artificial

intelligence, 1, 3
neural network, 1–110

association, 4, 7
asymptotically stable, 115
asynchronous, 6, 26, 27, 29, 30, 36
attractor, 19, 27

B
backpropagation, 4, 7
basic differential multiplier method, 33
BDMM, see basic differential multiplier

method

C
classification, 4, 7
combinatorial optimization, see opti-

mization
computational intelligence, 4
connectionism, 2
constrained space, 54, 55, 57, 58
constraint, 9, 16, 19, 25, 31, 32, 53–55, 59,

64–67, 70, 73, 75, 77–79, 81, 83–
85, 87, 88, 90, 91, 93–97, 108,
111, 112

built-in, 53, 65, 66, 68, 69, 108, 110
hard, 73, 80, 81, 88, 90, 108
quadratic, 77, 78, 83, 92, 108, 109

convergence, 22, 29, 30, 50, 51, 60, 67–69,
71, 84, 86–88, 91

D
decay term, 44–46
deformable template, 35, 97, 111

degeneration, 16, 77, 79, 108, 109
displacement, 29, 43–46, 107
dynamic

penalty method, see penalty
system, 3, 19, 27, 115

E
eigenvalue, 60
elastic

net, 11, 16, 34, 35
net algorithm, 11, 16, 34, 93–95, 97,

98, 102–106, 109–111
hybrid, 104, 106, 110
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Samenvatting

Het onderwerp van onderzoek
In dit proefschrift wordt de relaxatie-dynamica van zogenaamde recurrente neu-
rale netwerken bestudeerd. Meer specifiek richt de analyse zich op Hopfield-
en aanverwante recurrente netwerken. Een neuraal netwerk wordt recurrent ge-
noemd, indien de outputs van de neuronen (op een gewogen manier) worden te-
ruggekoppeld naar de inputs. Een belangrijke consequentie van deze architectuur
is dat na een ‘random initialisatie’ een recurrent netwerk in het algemeen niet in
evenwicht is. Echter, onder bepaalde voorwaarden blijkt relaxatie naar een even-
wichtstoestand van het neurale netwerk spontaan op te treden. Het begrijpen van
deze relaxatie en het vinden van de voorwaarden waaronder relaxatie is gegaran-
deerd voor diverse, zo algemeen mogelijk gedefinieerde klassen van recurrente
netwerken is het hoofddoel van deze dissertatie.

Teneinde de gevonden theorie te toetsen (en, naar aanleiding van de uitkom-
sten, de theorie verder te verbeteren) zijn allerlei relatief eenvoudige simulaties
uitgevoerd. Om tevens inzicht te verkrijgen in de toepasbaarheid van de onder-
zochte modellen zijn daarnaast op het terrein van de combinatorische optimalise-
ring een aantal simulaties uitgevoerd. Bij problemen uit dit vakgebied gaat het in
beginsel om het vinden van de ‘beste’ oplossing uit een grote verzameling van
potentiële oplossingen, waarbij de oplossingen veelal moeten voldoen aan een
reeks nevenvoorwaarden. De aanwezigheid van deze nevenvoorwaarden heeft
de keuze van de diverse netwerkmodellen sterk beı̈nvloed: de netwerken van
hoofdstuk 3,4 en 5 verschillen bovenal in de manier waarop de nevenvoorwaar-
den worden behandeld. Als laatste is een aantal zogenaamde ‘elastische’ netwerk-
modellen geanalyseerd. Deze neurale netwerken zijn speciaal ontworpen voor
het oplossen van het ‘handelsreizigerprobleem’, misschien wel het beroemdste
combinatorische optimaliseringsprobleem.

De resultaten

Na een inleidend hoofdstuk waarin het ‘waarom’, het ‘wat’ en het ‘hoe’ van het
onderzoek zijn uiteengezet en gemotiveerd, worden in hoofdstuk 2 de vertrek-
punten beschreven. Het betreft hier een overzicht van de relevante netwerkmo-
dellen zoals voorkomend in de literatuur, voorafgegaan door een inleiding in de
statistische fysica en gevolgd door een verzameling in de literatuur aangetroffen
toepassingen van Hopfieldmodellen. Er is voor gekozen om belangrijke stukken
van het gebruikte wiskundig gereedschap op te nemen in de bijlagen A t/m D.



136 Samenvatting

De weergave van het nieuw gevondene start in hoofdstuk 3 met de analyse van
het klassieke stochastische Hopfieldmodel. Een statistisch-fysische analyse levert
twee ‘mean field’ approximaties op voor de vrije energie van het systeem, waar-
van de stationaire punten exact samenvallen. Indien de sigmoı̈de gekozen wordt
als de overdrachtsfunktie in de neuronen, valt één van deze twee approxima-
ties precies samen met de uitdrukking van de energie van het klassieke continue
Hopfieldmodel: continue Hopfieldmodellen hebben volgens deze zienswijze een
statistisch-mechanische interpretatie. Bij die veelgebruikte keuze van de sigmoı̈de
als overdrachtsfunktie kan het effect van de integraal, zoals voorkomend in de uit-
drukking van de energie van het continue model, nauwkeurig worden geanaly-
seerd en kunnen enige misverstanden, zoals aangetroffen in de literatuur, worden
rechtgezet. De andere approximatie van de vrije energie is de sleutel tot het vin-
den van een zeer algemene energiefunktie van het oorspronkelijke continue Hop-
fieldmodel. Deze funktie, die een uitdrukking is in zowel de input- als de output-
waarde van alle neuronen, blijkt de toestand van een Hopfieldnetwerk volledig
te beschrijven. De extreme waarden van deze funktie corresponderen precies met
het complete stelsel van evenwichtsvoorwaarden van het oorspronkelijke continue
Hopfieldmodel.

Naast expressies van de vrije energie worden de stabiliteitsvoorwaarden van
de bijbehorende continue bewegingsvergelijkingen besproken. Het hoofdstuk
wordt afgesloten met een paar relatief eenvoudige experimenten gebruikmakend
van een aantal van die bewegingsvergelijkingen. Allereerst wordt hetn-toren pro-
bleem opgelost, onder toepassing van de zogeheten penalty methode. Daarnaast
wordt getoond hoe het toevoegen van thermische energie aan het continue model
het vinden van de globale (i.p.v. een locale) oplossing kan bevorderen. Het betreft
hier de aanpak met behulp van ‘mean field annealing’, welke gezien kan worden
als een deterministische approximatie van de bekende aanpak met behulp van ‘si-
mulated annealing’.

In hoofdstuk 4 wordt als eerste een analyse gedaan van stochastische Hop-
fieldnetwerken die onderworpen zijn aan een bepaalde, eenvoudige nevenvoor-
waarde: de betreffende nevenvoorwaarde wordt ‘ingebouwd’ in het neurale net-
werk. Eenzelfde mean field benadering blijkt mogelijk te zijn als welke in hoofd-
stuk 3 is uitgevoerd. De eigenschappen van de twee in dit hoofdstuk gepresen-
teerde approximaties van de vrije energie zijn wat ingewikkelder dan die uit het
vorige hoofdstuk, maar vertonen verder een grote gelijkenis. Bovendien kan een-
zelfde generalisatie worden uitgevoerd. Deze levert een derde vrije energiefunk-
tie op waarvan de extrema wederom precies corresponderen met de complete ver-
zameling van evenwichtsvoorwaarden van het (nu aan nevenvoorwaaarden on-
derworpen) neurale netwerk.

Een zeer belangrijke stap wordt vervolgens gezet door de generalisatie ver-
der door te trekken. In de eerste plaats wordt de wiskundige beschrijving zoda-
nig verruimd dat ‘willekeurige’ nevenvoorwaarden in het neurale netwerk kun-
nen worden ingebouwd. De beschrijving wordt nog algemener omdat vervolgens
ook bijna willekeurige kostenfunkties (i.p.v. louter kwadratische) worden toege-
laten. Stap voor stap passeren steeds algemenere expressies voor de vrije energie
de revue en worden de stabiliteitsvoorwaarden van diverse bijbehorende syste-
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men van bewegingsvergelijkingen besproken. Dit levert uiteindelijk het meest al-
gemene raamwerk van continue Hopfieldmodellen op. Ook dit hoofdstuk eindigt
weer met de resultaten van enige uitgevoerde simulaties, waarbij de nevenvoor-
waarden zoveel mogelijk zijn ingebouwd in het neurale netwerk. Het gevonden
stabiliteitsgedrag bij deze experimenten is in overeenstemming met de theoreti-
sche verwachtingen en een aantal problemen is correct opgelost. Daarnaast is een
belangrijke experimentele uitkomst dat bepaalde, in het netwerk ingebouwde, ne-
venvoorwaarden de gebruikelijke statistisch-mechanische interpretatie van conti-
nue Hopfieldmodellen teniet doen, waardoor een ándere dan de oorspronkelijke
oplossing van het gegeven probleem gevonden wordt. Dit maakt duidelijk dat
het algemene raamwerk zekere beperkingen kent, welke nog om nader onderzoek
vragen. Voor het overige is het van belang te vermelden dat het inbouwen van
nevenvoorwaarden de convergentiesnelheid van de bewegingsvergelijkingen ten
zeerste blijkt te bevorderen.

In hoofdstuk 5 wordt een derde methode besproken voor het behandelen van
de nevenvoorwaarden. Gebruikmakend van multiplicatoren van Lagrange wordt
het zogenaamde Hopfield-Lagrangemodel gedefinieerd. Naar analogie van het
bekende fysisch model van een veer-massa-systeem worden stabiliteitscondities
van het Hopfield-Lagrangemodel afgeleid. Dit blijkt te kunnen bij toepassing van
zowel het Hopfieldmodel zonder nevenvoorwaarden als van dat met ‘willekeu-
rige’ nevenvoorwaarden en ‘willekeurige’ kostenfunkties zoals geanalyseerd in
hoofdstuk 4. Evenwel, deze condities zijn in diverse gevallen moeilijk analytisch
verifieerbaar. Voorts wordt de werking van kwadratisch geformuleerde neven-
voorwaarden bij toepassing van het Hopfield-Lagrangemodel ontmaskerd. Het
model blijkt bij gebruik van dat type nevenvoorwaarden te degenereren tot wat
is genoemd een dynamische penalty methode. De multipliers krijgen bij het niet ver-
vuld zijn van de nevenvoorwaarden steeds grotere waarden en de multiplierter-
men gaan zich gedragen als penaltytermen (de multipliers vallen precies samen
met de gewichten van de penaltytermen). De waarde van elke multiplier blijft
toenemen totdat het systeem een toestand aanneemt waarbij aan de bijbehorende
nevenvoorwaarde is voldaan. Als op de duur aan alle nevenvoorwaarden is vol-
daan, treedt er een verschijnsel op dat sterk lijkt op dat van een fasetransitie in de
statistische fysica. Daarbij wordt het systeem plotseling stabiel.

Met beide genoemde Hopfield-Lagrangemodellen (zonder en met nevenvoor-
waarden) zijn allerlei experimenten uitgevoerd te beginnen met een aantal een-
voudige en eindigend met een moeilijke, te weten, het handelsreizigersprobleem.
De experimenteel gevonden stabiliteitseigenschappen zijn in overeenstemming
met hetgeen theoretisch verwacht werd. Ook stemmen de simulatieresultaten
overeen met de intuı̈tief te verwachten stelregel dat hoe moeilijker het probleem
is, des te langer de rekentijd en-of des te slechter de kwaliteit is van de aangetrof-
fen oplossingen. Een andere bevinding is dat Hopfield-Lagrangemodellen met
veel multipliers het veel beter doen dan die met weinig (waarbij meerdere neven-
voorwaarden bij elkaar worden genomen). Een verrassing is het fenomeen dat
pure Hopfield-Lagrangeformuleringen van het handelsreizigersprobleem betere
oplossingen opleveren dan die waarbij een deel van de nevenvoorwaarden wordt
ingebouwd en de rest wordt aangepakt met multipliers.
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In hoofdstuk 6 wordt onderzoek gedaan naar zogenaamde ‘elastische’ netwer-
ken. Begonnen wordt met het klassieke elastische netwerk voor het oplossen van
het handelsreizigerprobleem. Aangetoond wordt dat ook dit netwerk beschouwd
kan worden als een toepassing van de dynamische penalty methode, waarbij on-
der invloed van verlaging van de temperatuur de gewichten van de penalty ter-
men langzaam afnemen. Bovendien veranderen ze van vorm. De analyse laat
verder zien dat een aantal in de literatuur voorkomende opvattingen (over de re-
latie van het elastische net met bepaalde Hopfieldnetwerken) onjuist is. Voorts
worden twee alternatieve elastische netwerken geanalyseerd die een correcte af-
standsmaat toepassen t.a.v. de afstanden tussen de opeenvolgende punten in het
elastische netwerk. Voor kleine probleeminstanties doen deze netwerken het be-
ter, voor grotere netwerken iets slechter dan het oorspronkelijke elastische net-
werk.

Tot slot
In het laatste hoofdstuk worden de resultaten gegroepeerd gepresenteerd en be-
discussieerd. Daarbij komt naar voren dat het gevonden ‘meest algemene raam-
werk’ van continue Hopfieldmodellen (met bijbehorende theorema’s) en de in-
voering van het begrip ‘dynamische penalty methode’ (met bijbehorende voor-
beelden) zeer belangrijke elementen zijn van deze dissertatie. Voorts wordt gecon-
cludeerd dat de gegenereerde simulatieresultaten (samen met die in de literatuur
aangetroffen zijn) doen vermoeden dat Hopfieldnetwerken uitstekend geschikt
zijn voor het vinden van een oplossing van combinatorische problemen waarbij
een oplossing wordt gezocht die aan allerlei nevenvoorwaarden moet voldoen,
maar waarbij er geen kostenfunktie geminimaliseerd hoeft te worden. Echter, in-
dien er naast nevenvoorwaarden ook optimalisatie in het spel is, kan het vinden
van een kwalitatief goede oplossing niet zonder meer gegarandeerd worden. Het
toepassen van zoveel mogelijk domeinkennis lijkt voor moeilijke combinatorische
optimaliseringsproblemen een onmisbaar ingrediënt.

Het hoofdstuk wordt besloten met een reeks van aanbevelingen voor verder
onderzoek. Een aantal theoretische vraagstukken dat is blijven liggen kan alsnog
worden aangepakt. Het is o.a. interessant om te onderzoeken welke klassen van
nevenvoorwaarden op een zodanige wijze kunnen worden ingebouwd dat een
zinvolle statistisch-mechanische interpretatie van de resultaten mogelijk is. Ze-
ker intrigerend is de vraag of het meest algemene raamwerk ook geldig is voor
stochastische Hopfieldnetwerken. Voorts lijkt het verstandig om de in dit proef-
schrift naar voren gebrachte theoretische resultaten te gaan toepassen op allerlei
praktijkproblemen. Daarbij moet waarschijnlijk heel wat ervaring worden opge-
daan om voldoende inzicht en intuı̈tie op te bouwen voor daadwerkelijk succes:
het maken van allerlei juiste keuzes (bijvoorbeeld t.a.v. de architectuur van het
netwerk, het schema van verlagen van de temperatuur, de manier van afbeelden
van het probleem op het neurale net, de wijze van initialisatie van het netwerk)
is zeker geen triviale zaak. Deze praktijkgerichte stap lijkt ook zinvol ten einde
toekomstig theoretisch onderzoek op dit specifieke terrein van recurrente neurale
netwerken op directe en indirecte wijze te ondersteunen.
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