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Preface

The background

Creating a thesis is no sinecure. As is often lamented, it is a project which takes
much energy and a substantial amount of time. In fact, the time needed for pro-
ducing this dissertation has faulted my expectations in two ways. On the one
hand, the actual work took a rather short time: the starting point was about three
and a half years ago when the discipline of neural networks, as yet unknown to
me, made a vague but challenging impression on me. On the other hand, | must
say that the time required has been considerable: almost four and a half decades
of my life have passed in order to arrive at this point. As you might presume,
many reasons can be given for this. Now, contemplating them, | think two issues
have been all-important and, actually, conditions sine qua non for the realization
of this work. The first one relates to the question how | have come in the position
to collect enough knowledge, the second one relates to the case of how I got the op-
portunity to accumulate enough self-confidence in order to first start, and then to
finish the project. Very many people have helped me in this process and | would
like to thank some of them explicitly here.

Growing up along the borders of the river ‘Wantij’, | discovered many secrets
of nature. My parents offered me much freedom in going my own way, in explor-
ing and in finding out, using the things | came across. | was surrounded by many
friends of my age. Besides having the usual games, we constructed large piers in
the river used for swimming, fishing and mooring. By doing this, we learned as
a matter of course the basic principles of mechanical engineering. At high school,
certain teachers were able to strike the right note in order to rouse my love for
mathematics and physics. | still remember the explanations on algebra and geom-
etry by my mathematics teacher when | was 13 years old. Likewise, I still recollect
the presentation by my teacher of physics on the differential equation of a simple

harmonic motion
2

u pa—

ms +cu =0,

having a sinuous function as solution. Ever since, | have loved differential equa-

tions and, curiously enough, in a way the said equation plays a part in this thesis!
During my student times at the Technical University Delft, | was often more

engaged on student politics and the social impact of science than mathematics and

physics itself (it was in the seventies ... ). Nevertheless, | was taught many basic

principles of theoretical physics and mathematics. | also learned how computers
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could be used, as it was done in those days. For my master’s thesis, | worked in
the field of numerical analysis, and again differential equations played a big part.
My working career started in 1977, almost 19 years ago. Since that point of time,
| stayed at various places (see my curriculum vitae) and | learned many differ-
ent subjects. But, whatever my activities were, science continued to attract me.
And fortunately, there have been many opportunities to augment my scientific
knowledge. E.g., caused by the enormous automation in society, computer sci-
ence started to cross my path more and more.

Looking back now, | might say | have been quite lucky to be able to constantly
improve my knowledge and skills during my life. In relation to my scientific back-
ground, this process has taken place in three fields especially, namely, mathemat-
ics, physics and computer science, all of which have been indispensable for re-
alizing this thesis. Moreover, | have been able to increase my self-reliance at the
same time, although in a different way. I still remember very well the moment of
finishing my master’s thesis, when | did not feel strong enough to continue in re-
search: scientific work seemed to be a privilege for other, smarter people. Besides,
another even more difficult task announced itself: our first child was coming and
would soon attract much attention and energy. But ever since, by these and other
experiences — like during the Mozambican adventure — my self-confidence could
grow, slowly but eventually to a sufficient measure. The intensive contact with so
many colleagues, students, and, above all, friends have been a crucial factor here.

Acknowledgements

Of all people, I would like to thank you, Anneke, first. About 28 years ago, we be-
came close friends and we still are. Of everyone, | am most indebted to you. We
have lived to see incredibly many things together, with the creation of our family
of 3 sons as undoubtedly the most wonderful experience and the most radical de-
cision. Yet, you also gave me a wide berth for finding out much on my own. More
specifically, referring to this thesis, you have seen all my moods on it, all progress,
doubts, attempts and struggles, in other words, the whole weal and woe of this
project. Thanks very much for everything! Next, | would like to thank my parents
and my parents-in-law for giving much confidence and support during so many
years, in spite of the numerous, in their eyes sometimes rather wild adventures |
attempted. It is really a wonderful notion to have you at the ceremony, soon.

It is impossible to thank by name every one of the friends | encountered dur-
ing my life. However, some can’t possibly be passed over. | thank my friends
from Delft, certainly Gerrit, Rob, and Romke, among other things, because of the
exciting walking and sailing tours we made, and Gerrit together with Tineke on
account of the many years of intense friendship. Particular thanks also go to Pe-
ter and Elly for the innumerable lovely hours experienced, first together and later
separately, quite especially with Elly in Amsterdam. There, | also met other people
within a large network of friends. Of all of those, | would like to thank Els for the
enjoyable moments we witnessed. | thank Nannie and Raymond from Eindhoven
for all the nice times together and our talks (including those using electronic mail).
Finally, Marc, thank you very much for the many moments of discussion (and of
silence!) during the years we occupied the same office-room, as well as for your
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patience in improving my written English. | feel very happy about the immediate
willingness of you and of Raymond to be my ushers during the ceremony.

Considering the actual realization of this PhD-study;, | first and above all thank
you, Cor, for having been my advisor and copromotor. Your critical and inspiring
comments have been indispensable. They stimulated me to look for answers to
new questions, to express myself clearly, and to improve my mathematical analy-
ses. In particular, | remember our joint efforts to unravel the mathematical state-
ments of the Simic’s article [77]. | think your contribution at that time was the seed
for the decisive break-through of the ‘most general framework’, later on. Second,
I want to thank you, Jock, for the many discussions we have had during the work
on your master’s thesis [35] concerning the elastic net algorithms. Some of your
ideas you will see again in this dissertation, although in a somewhat different ver-
sion. The support of both of you has inspired me to use the word ‘we’ instead if
‘I’ almost everywhere in this thesis. You might interpret this as my feeling to be
supported by either of you two during the process of entrusting the paper with
my statements.

I thank Arie de Bruin for his willingness to be my promotor and for his critical
comments on certain parts of this dissertation, as well as the theses belonging to
it. | thank Emile Aarts for his spontaneous agreement to participate in the PhD-
committee and for the thorough discussion on the contents of this work-piece. |
thank Rommert Dekker for his confidence offered during the final phase of the
creation of the manuscript. | further thank my old college friend Anton Nijholt:
some 22 years ago, we worked intensively together in the students’ movement,
now you are one of my reviewers and opponents, once again showing the fact that
life may house pleasant surprises. | further would like to thank Jan Brinkhuis and
Joost Kok for their immediate willingness to oppose at the ceremony of the next
21-stof June. | thank Gert-Jan Lokhorst for his readiness to peruse this manuscript
on statements concerning the logic of science. Hans de Bruin, thank you for mak-
ing the ‘style files’ of your thesis available to me (it really saved me a lot of time
and tiresome work), and Reino de Boer, thank you for explaining the intricacies
of IATEX | needed.

Finally, as | have promised you, Mark, Paul, and Erik, you find your names in
this book. Dear sons, thanks for showing that you understood my engagement
during the preparation of this thesis. | hope that, in times to come, we will have
more unlaboured opportunities to see beautiful things together. Likewise, | wish
with all my heart that some day, in one way or another, my work will be a source
of inspiration for you.

Rotterdam, April 1996






Chapter 1

Introduction

This thesis refers to an analysis of various models of recurrent artificial neural net-
works and to how they might be applied in order to solve certain optimization
problems. It therefore seems most appropriate to start by highlighting the posi-
tion of the specialty neural networks among other areas of science, to present a
historical sketch of its development, to explain what is actually meant by an arti-
ficial neural network, and to describe how it can be applied. We shall then shortly
dwell upon the central theme of this study, by presenting a general mental image
of the notion of relaxation and by explaining how this may take place inarecurrent
neural network. Next, the general research objectives are formulated, including a
short sketch of how the project got started and gradually evolved. The subject of
the succeeding section is the methodology used. It also covers a justification of the
chosen working-method. This introductory chapter is concluded by an exposition
of the structure of the rest of the dissertation.

1.1 Artificial neural networks

1.1.1 Artificial neural networks and Al

Atrtificial neural networks (ANNS) are part of the much wider field called artificial
intelligence (Al). Al can be defined as ‘the study of mental faculties through the
use of computational models’ [23]. A related definition is that ‘Al is the study of
intelligent behavior’ including ‘the implementation of a computer program which
exhibits intelligent behavior’ [32]. In yet another characterization it is noted that
"the objectives of Al are to imitate by means of machines, normally electronic ones,
as much of human activity as possible, and perhaps eventually to improve upon
human abilities’ [67]. An unavoidable difficulty of these and similar definitions
is that they are always based on other notions whose precise meaning is hard to
state!. E.g., in the second description, it is difficult to define precisely the notion

1This concerns a well known problem in science: definitions are always based on other notions. At
a certain level, one should accept some ‘primary’ terms [53].
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of intelligent behavior. Notwithstanding this, it is clear from the given defini-
tions that usually, within Al, computers are applied to imitate the mental faculties
of our brain which, among other things, comprises of vision, olfaction, language
comprehension, thinking, reasoning, searching, remembering, learning, sensing,
and controlling. Besides, the fundamental question arises: which modelling ap-
proach is chosen by Al researchers? Roughly speaking, two main streams can be
distinguished in the ways Al is modelled?, namely symbolism and connectionism
[32]. The most fundamental difference between the two approaches concerns the
representation of knowledge. In case of symbolism, this is done by using ‘physical
symbols’. In this approach, knowledge is represented and manipulated in a struc-
tured way, e.g., by means of a computer language like Prolog or Lisp. Logic plays
a great part here, and classical expert systems are a well known example. On the
other hand, in the ’connectionistic’ approach, the representation of knowledge is
numerical, where the weight values between the interconnected neurons (see be-
low) represent knowledge in a distributed and generally unstructured way [54].
In this case, calculus and probability theory are important tools.

1.1.2 Inspiration from the biological brain

In quite a bit of Al research, the qualities of our brains are the source of inspira-
tion. More specifically, within the study of ANNSs, the way our cerebra are com-
posed is directly taken into account: the biological neural network is imitated by
an artificial one where certain architectonic elements of the cerebra are taken over.
The following convenient brain characteristics are often put forward as reasons to
study its workings [44, 79]:

o Itis fault-tolerant: damage (to individual so-called neurons) can occur
without a severe degradation of its overall performance.

o Itis flexible: adjustment to a new environment is easily done through
learning.

e It is highly parallel: many neurons process the (locally available) in-
formation simultaneously.

e Itisanarchic: there is no specific area which controls the overall work-
ing of the brain and the neurons process the incoming information au-
tonomously.

¢ Itcan deal with fuzzy, probabilistic, noisy, and even inconsistent infor-
mation.

¢ Itis small, compact, and dissipates little power.
Comparing the real brain and all man-made devices, it should be clear that any

element of the latter group enjoys only a tiny subset of the brain properties men-
tioned above.

2In the background of the modelling problem, an intense philosophical discussion rages on what
human intelligence actually is and, related to this fundamental question, on whether a machine like
a computer can really have a mind (becoming apparent by, for example, the ability to 'feel’ pain and
pleasure). There exist various elaborated points of view on this intriguing subject some of which can
be found in [26, 45, 61, 67].



1.1 Artificial neural networks

The detailed working of the brain has been barely understood. Yet, during the
last decades, both in the symbolic and in the connectionistic camp, many compu-
tational models have been proposed, which proved to be able to imitate certain
elementary mental functions. The construction of those models is usually based
on knowledge from many areas of science. E.g., in the area of natural language
comprehension, specialists in linguistics, computer science and cognitive psychol-
ogy make important contributions. In robotics, mechanical and electronic engi-
neering play a big part. Constructing a theorem-proving device requires knowl-
edge of mathematics, and building an expert system demands, besides knowl-
edge of logic, the elicitation of quite a bit of ‘domain knowledge’ from experts in
the field. When composing devices which can see or hear, one uses knowledge
from physics, and when constructing an artificial olfactory organ, one requires
knowledge of chemistry too. An example might give some idea of the variety
of information that should be collected to construct a model with only one spe-
cific function. In the ‘signal channelling attention network’ for modeling so-called
‘covert attention’ (a certain, not overtly visible selective process of sampling the
visual environment by the eye used, e.g., to select future targets for eye fixation),
four different disciplines have been applied: biology (neurophysiology), psychol-
ogy (psychophysics), physics (statistical mechanics), and computer science (par-
allel computation) [73].

In the general ANN approach, the focus is firstly mathematical: we try to catch
the working of the brain in abstract mathematical models, which can be analyzed
by means of mathematical specialties like dynamic systems theory, probability
theory and statistics, or computational learning theory. Certain elements of the
anatomy and physiology of our brain as studied in neurobiology act as source of
inspiration in the modelling process, but they are, in general, merely points of de-
parture. Theoretical physics is relevant in offering several well studied models
which have proven to be useful, and computer science can be used to perform
simulation studies on the ANN models in question. Last but not least, electronic
engineering can be applied in order to construct, test, and apply (successful) ANN
models in hardware.

Moreover, there is areverse side to the coin. Artificial models of the brain often
involve new paradigms and in their turn, may be adopted to solve (old and new)
practical problems in a (completely) new way. Thus, in this way, nature shows
us how to tackle difficult problems. This surprising, reversing effect may lead to
a nice spin-off of the study of artificial intelligence. In fact, part of the study as
described in this thesis exhibits an example of this recoiling effect: we have tried
to solve combinatorial optimization problems in an alternative way using ANNSs.

1.1.3 A brief historical sketch

During the early forties, abstract models concerning the working of a neuron were
introduced [60]. A few years later, a law was proposed that explains how a net-
work of neurons can learn [39]. Approximately at the same time, the symbolic ap-
proach was applied by scientists who made proposals on the construction and im-
plementation of chess-playing computers (for a more detailed historical overview,
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we refer to [27]). Another example of the symbolic way to grapple with Al, was
the creation of a theorem-proving program [63]. Later, it was recognized that
the logic-oriented approach of this program — precisely like in the event of chess-
playing machines — should be broadened to a knowledge-based approach where,
besides a certain inference strategy, the acquisition and representation of domain
knowledge in a so-called knowledge base is considered to be crucial. The process-
ing of this knowledge is performed by a separated inference engine and is symbol-
ically oriented. In the mid-eighties, many expert systems having this architecture
were constructed with the objective of simulating human experts intelligence.

In the mean time, the connectionistic approach had gone through a severe cri-
sis. Often, the book of Minsky and Papert [62] (published in 1969) is taken as
the root of all the trouble around connectionism in the seventies. It describes cer-
tain strong theoretical limitations of simple perceptrons (a class of certain ANNS).
It also expresses the opinion that an ‘interesting learning theorem for a multi-
layer machine’ might never be found. Yet, some researchers persevered and in
the eighties, neural networks returned to the scene. The backpropagation algo-
rithm as popularized by Rumelhart et al. [75] has been an important stimulus just
like the contribution by Hopfield using the idea (from physics) of energy mini-
mization [46, 47]. A few years later, neural networks became a quite popular area
of research with hundreds of conferences every year and the genesis of dozens of
journals.

Due to the theoretical improvements, ANNs became a new tool in resolving
practical problems. A functional classification yields four application areas [32],
namely ‘classification’ (assignment of the input data to one of an (in)finite number
of categories), ‘association’ (retrieval of an object based on part of the object itself
or based on another object), ‘optimization’ (finding the best solution), and ‘self-
organization’ (structuring received data). Within any of these classes, many sub-
classes can be distinguished, each in its own stage of development. Classification
is probably the best-known and largest class with numerous application areas like
speech recognition [21], handwritten digit recognition [58], control [6], prediction
of time series, image compression, and others (for an overview, we refer to [44]). A
collection of applications in the field of optimization and association will be given
at the end of the next chapter.

Nowadays, the symbolic as well as the connectionistic camps have run up
against certain barriers of their approach and seem more prepared to merge and
also to integrate with other promising areas like genetic algorithms [36, 56] and
fuzzy systems [54]. In a recent textbook [32], this tendency of integration is ex-
tensively described and illuminated with examples. The three fields neural net-
works, genetic algorithms, and fuzzy systems together are sometimes termed com-
putational intelligence [29] (see further section 2.2.3).

1.1.4 An overview of ANNs

Nowadays, there are many textbooks® on ANNSs, all using a certain taxonomy.

3The most important one for this thesis has been the book by Hertz, Krogh, and Palmer [44]. A
classic is the book by Rumelhart et al. [75], another classic that of Hecht-Nielsen [41]. Still other general
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Defining neural networks

The basic building block of all networks is a neuron (also referred to as a unit,
node, processing element, or threshold logic unit). Various neurons are inter-
connected in differently organized topologies corresponding to different architec-
tures. A central goal of ANN research is to understand the global behavior of a
given ANN based upon the individual deportment of the neurons and its intercon-
nections. A precise definition of an ANN is hard to give. The general definition
by Hecht-Nielsen [40] (re-stated in [79]) gives several basic qualities:

“A neural network is a parallel, distributed information processing struc-
ture consisting of processing elements (which can possess a local memory
and carry out localized information processing operations) interconnected to-
gether with unidirectional signal channels called connections. Each process-
ing element has a single output connection which branches (‘fans out’) into
as many collateral connections as desired (each carrying the same signal — the
processing element output signal). The processing element output signal can
be of any mathematical type desired. All of the processing that goes within
each processing element must be completely local: i.e., it must depend only
upon the current values of the input signal arriving at the processing element
via impinging connections and upon values stored in the processing element’s
local memory”.

We would like to subjoin the following important aspect:

A central issue in the employment of a neural network is the way how infor-
mation is encoded in and retrieved from the neural system.

We now look more accurately at the working of an individual neuron. In the math-
ematical approach, a neuron is assumed to receive input signals, to add them to-
gether, and to generate an output signal using a given ‘transfer’ (or ‘activation’)
function, also termed input-output characteristic. More precisely, if O; represents
the output of neuron 4, I; an environmental (or external) input, w;; the ‘intercon-
nection strength’ from neuron j to ¢, U; the total input, and g the transfer function,
then the new output value of the neuron is calculated via

0 = g(U) = g(3_ wi; 05 + ). (1)

J

The vector O = (Oy,0a, ... ,0,) isoften called the system state of a neural network
having n neurons. From (1.1) we see that the signals incoming from other neurons
are weighted®.

In the first model by McCulloch and Pitts [60], the transfer function is a binary
threshold unit. The equation (1.1) can then be rewritten as

07" = 00> wi; 05 + T; &), (1.2)
J

books on ANNs are available, for example, [30, 32, 38, 54, 79, 82].
“In neurobiological terms, a weightw;; represents the ‘strength of the synapse’ connecting neuron j
to neuron ¢ [44].
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Figure 1.1: A scheme of an artificial neuron.

where p; is the local threshold value of neuron i and © is the unit step or Heaviside
function defined conform

1 ifz>0
O(z) = { 0 otherwise. (1.3)

Other choices for the transfer function [44] include linear functions and non-linear
functions like the sigmoid function (section 2.1.5). Even stochastic transfer rules
are possible (section 2.3.3).

Having defined the transfer function, we must still choose a rule for the up-
dating sequence of the neurons [44]:

e Asynchronous updating: one unit at a time is selected and its output
value is adjusted according to equation (1.1).

e Synchronous updating: at each time step the output of all neurons is
adjusted according to equation (1.1).

e Continuous updating: the output values of all units are continuously

and simultaneously adjusted, while at the same time the inputs change
continuously.

The last updating strategy will be discussed in section 2.3.2.

A taxonomy

Two basic criteria are often used to categorize ANNSs. The first one concerns the
way the signals propagate among the neurons [79, 44]. In a feedforward scheme, in-
formation is only allowed to flow in one direction without any back coupling. This
implies that the output of the network is uniquely determined given the weights
wy;, the transfer function in the neurons, and the external inputs of the neural net.
These networks are often structured in ‘layers’. A one-layer feedforward network
is called a perceptron. Feedback networks on the other hand, allow information to
flow among neurons in either direction, implying that such a net needs not nec-
essarily be in equilibrium nor that an equilibrium state is uniquely determined.
It is even the case that these recurrent networks do not necessarily settle down to
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a stable state. However, we shall confine ourselves to study those networks that
find an equilibrium state via a so-called relaxation process.

The second fundamental criterium concerns the way the network learns. Su-
pervised learning is a process that incorporates an external teacher and/or global
information. A network is considered to learn if the weight matrix (w;;) (some-
times called the networks ‘memory’) changes in time, mathematically expressed
as

dwss
3i,3j gy = :t” £0. (1.4)

In unsupervised learning there is no teacher. The network must discover pat-
terns, regularities and so on by itself. There should be a form of built-in self-
organization.

Using the two criteria, four types of networks can be distinguished. We limit
ourselves to comment on two of them (more details can be found in the afore-
mentioned textbooks). The most popular network is probably the supervised,
feedforward type. The mostly applied learning rule is called backpropagation:
using a set of correct input-output pairs (called the training set), small changes
in the connections w;; are made in order to minimize the difference between the
actual and the desired output value of every training example. In this way, the
learned stuff is fixed in the weight values w;; in a distributed way. All training
examples have their contribution to all final weight values, but in the end, it is
unclear what every individual weight precisely stands for: that is why we say the
representation of knowledge in ANNSs is ‘unstructured’. Afterwards, it is hoped
that the network can ‘generalize’ what it has learned: the network should also find
the correct output for an input not belonging to the training set. Function approx-
imation and pattern recognition are the common general applications’, while the
central points of theoretical study are learning, generalization and ‘representa-
tion’ [44, 84]: the representation problem concerns the question what type of func-
tion can be represented (and therefore might be learned) by a feedforward net-
work of given architecture. Besides the afore-mentioned popular type, there exist
many other supervised, feedforward models.

The second type we dwell on is the unsupervised, recurrent network type. Ne-
glecting the many other examples of this type, the binary, the continuous, and the
stochastic Hopfield models belong to this category. The models are called unsu-
pervised since the matrix (w;;) is fixed at the beginning (using global information
in one way or another) and is never changed®. The Hopfield models are the main
subject of our study. They will be introduced formally and discussed extensively
in the forthcoming chapters. Application areas of these networks are (memory)
association [44] and optimization, within a growing number of specialties (sec-
tion 2.4). In the next subsection, we confine ourselves to present an intuitive idea
of the working of these models.

5These types of applications can be considered subareas within the general class classification of
section 1.1.3.

60ther recurrent models like the Boltzmann machine [44], do include learning besides relaxation.
Our findings may also be applicable to the ‘relaxation phase’ of those networks.
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1.1.5 A mental image of relaxation in neural networks

Let us put aside all mathematical notations and concentrate on the general idea
behind the working of the Hopfield and allied models. We shall use a metaphor
originating from the world of physics which, in fact, makes real sense as will be
exposed later.

We imagine having a laboratory table with many magnets of various strengths
on it, whose initial direction can be adjusted as desired. It is further supposed that
the magnets can freely rotate after pulling over a lever. All magnets have their
own magnetic dipole field around them. If the lever is pulled over after having ini-
tialized the magnets in a randomly chosen direction, they will start rotating under
the influence of the mutual magnetic field forces. By the movement of the mag-
nets, the structure of the magnetic field constantly changes. The result is a com-
plex deterministic dynamic system. If we further suppose that energy dissipates in
some way (e.g., by friction and-or air resistance forces), the system will sponta-
neously ‘relax’ to an equilibrium state after a certain lapse of time.

Since the strengths of the local magnetic forces vary and there are very many
magnets, it is not unreasonable to suppose that there exist more than one different
equilibrium states of the system. Depending on the initialization of the direction
of all magnets, the system will find an equilibrium point, namely the ‘nearest’ one.
Stating the relaxation dynamics in mathematical physical terms, we say that the
system minimizes potential energy and settles down in that local minimum state,
which can simply be reached via a route ‘downhill’, away from the random initial
state. In figure 1.2, the process of energy minimization to a local minimum is vi-

A one-dimensional
energy surface

local minimum \

system state

Figure 1.2: Energy minimization to a local minimum.

sualized. All system states are supposed to lie along the horizontal axis, while the
arrows denote the direction of the minimization process along the energy surface.
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It has been Hopfield’s merit that he observed that the relaxation dynamics of his
recurrent continuous neural network — itself a generalization of a certain binary
model — can be described by a type of deterministic process as discussed above.
It is probably also obvious that these ANNSs can be useful in concrete optimiza-
tion applications, where a certain cost function should be minimized’. One should
merely choose a neural network whose energy function coincides with the given
cost function, initialize the network in one way or another, and then allow it to re-
lax: the final (equilibrium) state encountered is hoped to correspond to a (or the)
solution sought. This is the idea in a nutshell. However, in practice things are
generally much more complicated:

¢ In the first place, we are mostly interested in the global minimum of a cost
function, not in some local one. One way to solve this problem is to intro-
duce thermal fluctuations in the system by making the magnets stochastic.
To illustrate, we suppose that any magnet has only two opposite positions,
one with the magnetic north pole to, lets say, the right, and one with that
pole to the left. The actual position of a magnet depends on two factors,
namely on the current total magnetic field force (as caused by all other mag-
nets) as well as on the value of the current temperature in the system. All
magnets have a certain freedom in fluctuating randomly? controlled by the
value of the temperature: the higher the temperature is, the more a magnet
randomly fluctuates. Lowering the temperature has the effect that all mag-
nets are more driven by the locally existing magnetic field forces. Looking
at the dynamic relaxation process of this stochastic system after a randomly
chosen initialization, we observe that at high temperatures, the system be-
haves randomly. However, at lower temperatures the system will relax to
another so-called dynamic equilibrium: the magnets may still fluctuate but on
average, they will prefer one direction over the other. Furthermore, owing
to the random fluctuations, the system is more or less disposed to relax to
the global minimum by kicking out encountered local minima. It should be
clear that this stochastic magnetic field system is even more complex than
the deterministic one described earlier.

e The second complicating factor is related to the first one. Practical prob-
lems are generally defined in a high-dimensional space where the minima
lie widely scattered around. In fact, the picture on the cover slightly lifts the
veil of this very complicated hilly world, although the image merely shows
a two-dimensional landscape. Under high-dimensional circumstances, it is
much more difficult to imagine how the addition of thermal fluctuations
might achieve a relaxation to the global minimum.

¢ In the third place, practice may be unruly since solutions of problems are
often submitted to a certain set of constraints. Among other things, this is
often the case in the field of combinatorial optimization problems. There
are several ways to deal with this phenomenon. The eldest approach ap-
plied in neural networks is the penalty method, but it did not turn out to be

"This approach has also been pioneered by Hopfield, in co-operation with Tank [48, 49].
8Random fluctuations correspond to so-called thermal noise: see section 2.1.2.
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very successful (see chapter 2). Another way is trying to incorporate the con-
straints in the neural net, which appears to be possible in some cases. This
approach is the subject of chapter 4. In chapter 5, we shall encounter still
other techniques among which modifications of the well-known mathemat-
ical method using Lagrange multipliers.

e To conclude, we should note that the actual mapping of combinatorial (opti-
mization) problems onto ANNs is far from trivial: in practice, there appear
to be many ways to realize such a mapping, each one having its own benefits
and drawbacks.

We conclude the metaphor as given in this section, by remarking that a stochastic
Hopfield neural network turns out to behave like the sketched stochastic magnetic
system. Moreover, it can be approximated by a certain, slightly adapted, continu-
ous, and deterministic model. In both cases, the neurons in the Hopfield models
correspond to the magnets in the magnetic counterpart models. The approxima-
tion of the stochastic system by such a deterministic system is an important topic
of the chapters 3 and 4.

1.2 Research objectives

Contemplating the ways in which science is exercised, we can distinguish several
approaches. Even within a specific area of science, one often encounters substan-
tial differences concerning methodology: research can be either fundamental or
applied, either explorative or mapped-out in advance, either inductive or deduc-
tive, etcetera. Additionally, the objectives of the research project at hand are of-
ten formulated a posteriori, that is, after having completed the actual work on it.
Realizing these aspects, it seems appropriate to first touch upon the evolution of
this research project before stating its objectives and justifying the methodology
selected.

1.2.1 History of the research process

This study on the relaxation dynamics of recurrent neural networks started in the
autumn of 1992. Actually, there was no explicit objective of study at that time.
There was a paper [51] originated from a master’s thesis which reported promis-
ing results with respect to a new way of tackling the travelling salesman prob-
lem using two Hopfield type neural networks. We further read the relevant parts
of the textbook [44] on Hopfield networks which gave rise to certain questions,
and we encountered the book of Takefuji [82] containing some theory and a lot of
applications. Very soon, we hit upon certain inconsistencies which begged for a
solution. At that time, we also found two articles [71, 86] concerning the use of
Lagrange multipliers in combination with neural nets which seemed not to get
the attention that they deserved after their publication. Eventually, the study and
elaboration of all this led to several new results, among which the notion of a dy-



1.2 Research objectives

11

namic penalty method. Another consequence was the realization of our first publi-
cations®.

During that initial period, which also included some studies on combinatorial
optimization problems like the travelling salesman problem (TSP), the idea took
form to study the general relationship between Hopfield neural networks and the
so-called elastic net, the last one being a neural network especially set up to solve
the TSP. We studied Simic’s paper [77] (referred to in [44]) and other relevant ones,
and were promptly engrossed in a process of profound investigation. Simic’s arti-
cle appeared to contain many hard results, although most of the proofs were only
sketchy. To understand the details, we were forced to completely work out the
derivations. Calculus was the general tool of analysis. In addition, dynamic sys-
tems theory and statistical physics appeared to be of high importance: the first
one in order to study the stability of the relevant differential equations, the sec-
ond in order to exploit existing knowledge on certain thermodynamic models,
which have a close connection to the ANN models of our study'®. This ultimately
yielded many new theorems, including the ones relating to a quite general result
of this thesis namely the most general framework of continuous Hopfield models. In
addition to all efforts in the theoretical field, we performed several simulations
whose computational results will be reported for a substantial part?. This part
of investigation also led to several (international) presentations and publications,
whose series does seem still not be exhausted.

Finally, a new master’s thesis project was undertaken yielding a new analysis
of the elastic net algorithm [35]. It turned to fit in precisely with our theoretical
experiences. It also contained (and further inspired us to try) various alternative
elastic net algorithms.

1.2.2 The aims of this study

From the sketch given above, it is clear that the precise subject of what to study
and all reasons why*?, were not plain from the beginning. Instead, these insights
evolved gradually. Initially, the driving force was above all to understand why the
relevant models behave like they appear to do, particularly, when they are used to
solve combinatorial optimization problems. Very soon, the wish emerged to solve
certain inconsistencies we came across. Next, we wanted to extend existing theo-
ries, e.g., on the stability properties of the so-called Hopfield-Lagrange model. Fi-
nally, it turned out to be possible to generalize existing theories on Hopfield and
allied networks, both on the set of equilibrium conditions and on the stability of
the corresponding differential equations. Above all, the analysis has been mathe-
matical and physical. During the whole period, we tested whether the models of
study could be applied to solve combinatorial optimization problems in an ade-

9The references to our publications will be made more precise in the succeeding chapters.
10Simic [77] expresses this relationship in the following nice way: the ANN *“algorithms are in a
deeper sense an example of what one may call a ‘physical computation’ .
UBesides a lot of encouraging results, the experimental outcomes indicate certain limitations con-
cerning the general applicability of the framework.
12 At least one reason was obvious from the beginning namely, getting a Ph.D., a not-unimportant
by-product of all research efforts.
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guate way. These considerations taking together, we can now, a posteriori, define
the objectives of this research project as follows:

¢ The main objectives of this thesis are to explain'® the relaxation dynam-
ics of various recurrent (more precisely, Hopfield and allied) neural
network models, and to generalize existing theories on them.

e The secondary objectives are more diverse:

— thefirst one is to verify how the discovered theoretical results
can be used to reveal the relationship between Hopfield neu-
ral networks and the elastic net;

— the second one is to test whether the studied models can be
applied to solve certain combinatorial (optimization) prob-
lems in an adequate way.

From the arguments given in this subsection, the choice of the title of this thesis
should be obvious.

1.3 The chosen methodology: an apology

After having sketched the ‘what and why’ of this thesis, I** consider it proper to
describe the ‘how’ of it too, or, stating this in other words, to illuminate the chosen
methodology in the light of what is often referred to as the ‘logic of science’ [87].
As is often done in this philosophic domain, we shall differentiate between two
aspects, namely, the so-called internalistic point of view and the broader external-
istic one.

1.3.1 The externalistic view

In the externalistic view on how science originates, it is considered essential to in-
clude a sociological analysis of the scientific process: e.g., what are the motives,
driving forces, beliefs, prejudices, and so on of the scientists involved. Further-
more, one should investigate the ‘context of discovery’, i.e., what is the scientific
culture of the area of science at hand. Another fundamental aspect to look at is
the ‘context of justification’, which concerns the ways how given theories are jus-
tified. This more restricted approach is often termed the internalistic view, and it
will be discussed in a separate section.

The philosopher Kuhn, who is considered an externalist, distinguishes two
types of periods during the growth of scientific knowledge [57]: after a ‘pre-
paradigmatic’ period, revolutionary and non-revolutionary stages succeed each
other. In a revolutionary period, inconsistencies lead to a rejection of the older

13The notion of ‘scientific explanation’ is far from simple. Hempel and Oppenheim [42, 87] have
formulated four conditions to call an explanation ‘adequate’: (a) what is explained should follow on
logical grounds, (b) the explanation should use other laws, (c) the explanation should have testable
consequences, and (d) the explanation should be true.

M Throughout this dissertation, | use the word ‘we’ for reasons as explained in the preface. This sub-
section is an exception, because the chosen methodology is the one specifically selected by me.



1.3 The chosen methodology: an apology

13

theory, that is, the older ‘paradigm’, and to the formulation of a new one. In non-
revolutionary periods, inconsistencies encountered are either simply ignored or,
otherwise, adapted to the paradigm accepted everywhere.

Holding my exertions against the light of these considerations, it becomes clear
that it is not easy to give an unprejudiced judgement of my own. | myself join in
the neural network community, have been affected by it, and may even be indoc-
trinated, so perhaps, | am not aware of certain untenable starting points, motives,
or ideas. However, in spite of these imperfections, some general and some per-
sonal externalistic aspects can be observed. Let me first consider some general so-
ciological issues. The central premiss of all Al-research seems to be the belief that
human intelligence can somehow be (partially) modelled, using scientific means.
This matter is strongly related to the philosophic debate mentioned above in foot-
note 2. To illustrate, a group of researchers believes that human thinking is in fact
algorithmic, implying that, in principle, it can be emulated by a machine like acom-
puter. On the other hand, there are other groups of scientists who firmly oppose
against this ‘strong Al’ point of view, arguing, in one way or another, that the hu-
man mind is more than ‘just a collection of tiny wires and switches’ [33].

Considering the actions of the ANN community, | observe that the natural sci-
ences mathematics and physics are judged to be very helpful to model the capabil-
ities of the human mind. This belief has certainly been enforced by the success of
some ANN models (showing certain elementary brain abilities), which appeared
to be analyzable by means of mathematical physical models. Yet another common
belief in the community of Al is the idea that following the realized applications,
the research efforts will ultimately yield a lot of new practical applications and
thus, on that account, do make sense. In that manner, scientists may find a legit-
imation for their work. The afore-mentioned beliefs can be considered to belong
to the context of discovery. Together with other ideas on ANN models, they are
exchanged between researchers in the usual ways: papers, journals, and books
are published, discussions and talks are held at conferences. Owing to this, the
various paradigms of ANN theory have assumed a well-defined shape, each one
having its advocates and followers.

Considering my personal motives, | have already given an important one in
footnote 12. Another personal reason for choosing the subject of study of this the-
sis is that it precisely corresponds to a lot of foreknowledge | picked up during
my life. In relation to the context of discovery, | think that | have adjusted my-
self considerably to the current research customs in the area of neural networks
by reading much of the standard literature, by doing the same type of research,
and by presenting my results in the normal ways, both orally and in writing, to
the relevant research community.

Let me finish this section on the externalistic view with a personal opinion. In
the light of Kuhn’s philosophy, | feel that nowadays neural networks are in a non-
revolutionary stage of research. The discipline has several well-established basic
models and, in general, scientists are busy applying, refining, and understand-
ing them. | hold that the statements | bring out in this thesis, are refinements, im-
provements, illuminations, corrections, and generalizations rather than paradig-
matic revolutions. However, it will be other people who must decide this issue.
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1.3.2 The internalistic view

The pure ‘reconstruction’ of what has happened — including the justification of the
scientific results — is the central theme in the internalistic view on the growth of
scientific knowledge. The context of discovery is not considered here. Instead, a
scientist is thought to assume a more idealistic attitude: in the view of Popper [72],
atheory is proposed, and thereupon, it is tried to ‘falsify’ it. Precisely falsifications
increase scientific knowledge. It is impossible to establish absolute truth of any
theory. Theories are ‘conjectures’ which should be refuted, if there are reasons for
it. Let I consider my working-method in this view of Popper. I first try to describe
the method itself.

1. Any research effort on a new subject started by the collection of ‘the
relevant’ papers.

2. Depending on what was found, | tried to analyze, improve, correct,
generalize, apply, etcetera, inspired by mainly mathematical and phys-
ical ideas as evoked in my head and as available in ‘the relevant’ liter-
ature. The endeavors took place in at least the following ways:

— The technique | probably applied most was to make up an as sim-
ple as possible example corresponding to an encountered abstract
mathematical expression. Analyzing this simple ‘toy problem’ by
means of notions of calculus (sometimes supported by graphical
software packages) and physics, | tried to understand the essence.
In this inductive way, intuition grew and new ideas were born, in
turn leading to the suggestion of new theorems and insights. Of
course, these new discoveries had to be proven.

— Sometimes, | had got already a new insight without being able to
prove it!>. Often, a lot of trial and error was necessary to find the
explicit proof.

— Another trick which | applied several times, was to switch be-
tween the mathematical and the physical point of view, especially
at points where the one way seemed to come to nothing.

3. Finally, the acquired insights and stated theorems had to be tested. This
has again been done in several ways:

— By re-inspection of the derivations: | must admit to have found
many self-made errors this way.

— By making up several simulation studies: | wrote many computer
programs to inspect (the consequences of) my suggestions. Also

15Compare the pronouncement by Gauss: “Meine Resultate habe ich langst, ich such® nur noch den
Weg dazu” (restated in [87], p. 57.) or the observations by Penrose [67], in a discussion on the non-
algorithmic nature of mathematical insight: ”Rigorous argument is usually the last step! Before that,
one has to make many guesses, and for these, aesthetic convictions are enormously important — always
constrained by logical argument and known facts”.

16Some groups of computer scientists argue that the correctness of a computer program should al-
ways be proven using notions from mathematics (especially from logic). This is not a redundant lux-
ury: in computer science, a famous phrase states: “There is always a last bug”. Ironically, in this study
| did the opposite, namely, testing my mathematical theories using computer programs.
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in this way, | encountered many mistakes.

— Last but not least, | submitted papers and reports to colleagues,
both on my own department and on scientific conferences and
journals.

Looking back now, | see some limitations of my working-method. Whether |
found all ‘relevant’ papers, is very doubtful: the quantity of published papers
in proceedings, journals, books is overwhelming, even within a specialized disci-
pline like recurrent neural networks. So, | possibly missed certain relevant papers
and results.

The second point of the described working-method relates to the conjectures
of Popper. Even the mathematical theorems are conjectures: | frequently made
mistakes, some of which remained unnoticed for several weeks or so. Some prob-
ably still exist. However, | am not unique: as will be explained, | have met sev-
eral confusing mistakes by others, which engaged me for a substantial amount of
time and, simultaneously, inspired me to develop new conjectures. In fact, for a
substantial part, the new conjecturing statements of this thesis have grown out of
mistakes as made by others.

The last point, the testing phase of my working-method, consists of the efforts
to falsify my theories. Of course, | tried to find every error, and to what extent |
have been successful, is hoped to become clear in the near future. Actually, so far
as my attempts have failed, my conjectures still stand up, or, stating this in other
words, my as yet non-falsified conjectures are the body of this thesis'’.

1.4 The outline of the rest of the story

We finish this chapter by explaining the structure of the remainder of this thesis. In
the next chapter, the theoretical starting points are given. It consists of a general
sketch of theoretical results collected from the technical literature, that together
are considered to form the necessary background and basis of the subsequent four
chapters: the relevant ANN models will be introduced, preceded by an introduc-
tion on statistical mechanics and succeeded by an overview of example applica-
tions. The foundations as given in chapter 2 are related to a collection of math-
ematical techniques. These ones are described in the appendices, the last one of
which consists of a list of applied lemmas including their proofs.

Chapter 3, 4, 5 and 6 constitute the kernel of this thesis. We start by analyz-
ing the so-called unconstrained stochastic Hopfield neural network and relate it
to the classical continuous Hopfield model. Since the mathematical functions in-
volved are rather complex, we use a separate section to illuminate their properties
by means of some simple examples. Next, an interesting part of chapter 3 opens
up where for the first time a more general framework is presented. Chapter 4 deals
with a certain constrained Hopfield model. Surprisingly, it can be analyzed in the
same way and it can also be generalized. The apotheosis is the aforesaid most

17 Another logical consequence of this way of thinking is that, as far as my statements are correct, the
contents of this thesis can held to be trivial.
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general framework, where Hopfield networks are generalized to networks which
can model almost arbitrary energy expressions (instead of merely quadratic ones)
and which provide means for incorporating new types of constraints in the net-
work. However, experimental outcomes also show certain limitations of the gen-
eral framework.

Chapter 5 treats the Hopfield-Lagrange model. Most of this chapter is de-
voted to an analysis of the stability properties of the model. First, a potential
Lyapunov function is defined by means of which in certain cases stability of the
unconstrained Hopfield-Lagrange model can be proven. Second, stability of the
guadratic and allied constraints is demonstrated in a quite different way. In that
case, the model generally ‘degenerates’ to a type of the afore-mentioned dynamic
penalty model. Next, the theorem on the potential Lyapunov function for the un-
constrained Hopfield-Lagrange model is widened to one for the generalized con-
strained model.

In chapter 6, the investigations concerning the elastic net are presented includ-
ing its relation to the constrained Hopfield model of chapter 4: the surprising out-
come is that also the elastic net algorithm can be considered as a special type of
dynamic penalty method. A further analysis leads in a natural way to two alter-
native elastic net algorithms, which are investigated too.

Chapters 3, 4, 5, 6 all conclude with a few relevant computational results of
certain toy problems and applications tested. If the outcomes did not turn out
straightforward, corresponding comments are added. Finally, in chapter 7, we
draw our conclusions, discuss them, and do suggestions for future research.



Chapter 2

Starting points

In this chapter, the relevant theory of Hopfield neural networks will be sketched.
This theory constitutes the starting point of the explorations described in the rest
of this thesis. Before coming to the heart of the matter, a review of statistical me-
chanics is given: the theory about this subject turns out to be of great importance
for the understanding of stochastic Hopfield networks. We also present an intro-
duction on combinatorial optimization, the challenging application area. In the
succeeding chapters, we shall return to many aspects mentioned here.

2.1 Statistical mechanics

2.1.1 The basic assumption

The main goal of statistical mechanics [64] is to derive the macroscopic, i.e., physi-
cally measurable, properties of a system starting from a description of the interac-
tion of the microscopic components like atoms, electrons, spins. If we would take
the classical approach using a Hamiltonian system!, this would normally be an
impossible task: the huge number of microscopic components leads to a compa-
rable huge number of motion equations which cannot be solved practically. What
we need is a statistical approach yielding simpler models, which hopefully still in-
clude the essential physics and are tractable to analytic or numerical solutions [89].
To reach our goal this way, two subproblems can be distinguished: (a) Find the
probability distribution of the microscopic components in thermal equilibrium.
(b) Derive the macroscopic properties of the system using this probability distri-
bution.

Limiting our discussion to a discrete configuration space (meaning that the
space of all possible system states is countable), the basic assumption of statistical
mechanics concerning subproblem (a) is that in thermal equilibrium —that is, after

LIn certain circumstances, the quantum mechanical approach resolving the Schrédinger equation
would be another, mostly non-adequate alternative.
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a sufficient long time — any of the possible states a occurs with probability

1
P = Ze—ﬁHa. (2.1)
Here, H, is the total energy, called the Hamiltonian, of the system and Z is a nor-
malizing factor, called the partition function, which equals

Z =Y e Pt (2.2)

Equation (2.1) is called the Boltzmann formula or Boltzmann equilibrium proba-
bility distribution. The value of 3 is related to the absolute temperature T' by

1
=17 (2.3)

The constant & represents the Boltzmann coefficient, and, because it is only a scal-
ing factor, we can set it equal to 1.

Knowing the energy H, in every state, equation (2.1) can be used to calculate
the ‘thermal average’ (A) of any observable quantity A by application of

(A) =) PA,, (2.4)

where A, represents the particular value of A in state «.

Equation (2.1) will not be justified here. It can be made plausible from very
general assumptions on the microscopic dynamics of the particles [64] or, in a dis-
crete energy space, be derived from a calculation of the most likely distribution of
the particles over the various energy levels [4].

2.1.2 The free energy

It turns out very fruitful to define the so-called free or effective energy F' by

1
= In Z. 2.
F @B VA (2.5)

Using most of the above given equations as well as the fact that )~ P = 1, an
important relation can be obtained [44]:

1 1
F = e-lnZ=6-Y Pz
5 ERA
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where (H) equals the thermal average of the Hamiltonian and where

S =Y Pn P 2.7)
«

is the ‘entropy’ at thermal equilibrium, which appears to be a measure of the dis-
order of the system.

Equation (2.6) is derived under the assumption that the system is in thermal
equilibrium described by the probability distribution (2.1). Instead, we now con-
sider F'as a function of an arbitrary probability distribution P = (B, P, ...) given
by

F(P) = E(P) @%S(P) (2.8)
= ) PuHa+ % > PyInP,. (2.9)

From this equation, a variational principle?, called the principle of minimal free
energy, can be derived [64] which states that a minimum of F(P) corresponds to
the equilibrium probability distribution (2.1). The proof is based on the Lagrange
multiplier method (appendix A) taking as the only constraint) " P, <1 = 0. The
principle of minimal free energy (which is strongly related to the famous principle
of maximal entropy®) hands us a tool for calculating a stable equilibrium probabil-
ity distribution at given temperature T' = 1/3: we ‘only’ need to find the location
of the minima of F(P).

From (2.1) it follows that the equilibrium probability distribution is a func-
tion of both the energy levels H, and the temperature 7. It is sometimes said
that the free energy ‘knows about the (thermal) noise’ of the system, i.e., it ‘de-
pends in a non-trivial way on the temperature’ [77]. From (2.9) we conclude that
at high enough temperatures, F'(P) is generally dominated by the second term of
the right-hand side. This term appears to be a smooth and convex [25] function
of P and will be called the thermal energy of the system. Thus, in circumstances
of high temperature, F'(P) has only one minimum and the equilibrium probabil-
ity distribution is (almost) uniform. On lowering the temperature, the thermal en-
ergy decreases and the free energy becomes more and more dominated by the first
term of the right-hand side of (2.9) implying that, at thermal equilibrium, the sys-
tem will have settled down in states of lowest energy H,,.

2The calculus of variations is concerned with maxima and minima of functionals, where a functional
is defined as a function J : Q — R,  being a space of functions [7].

3The principle of maximal entropy, the second law of thermodynamics, holds for isolated systems,
i.e., systems which have not any thermal interaction with their environment. Instead, the minimum of
free energy holds for systems whose temperature is kept fixed via heat exchange between the system
and its environment: the system is contained in a ‘heath bath’ of constant temperature. Both entropy
and free energy are ‘thermodynamic potentials’. The extreme values of these potentials are ‘attractors’
to which the corresponding thermodynamic systems spontaneously evolve [74].
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2.1.3 Spin glasses

Statistical mechanics has been applied successfully to a large variety of systems.
In the context of our future discussions on neural networks, the techniques as used
for the study of so-called spin and other glasses — these are certain types of more
or less disordered magnetic systems — appear to be extremely relevant: the anal-
ysis and understanding of Hopfield neural networks is strongly facilitated by the
theory on these magnetic systems.

The microscopic elements of spin glasses are elementary atomic magnets, so-
called spins, fixed in location but free to orient, interacting strongly but randomly
with one another through pairwise forces [76]. In so-called Ising models, the mag-
netic orientation S; of any spin 7 is supposed to be binary, where S; € {<1,1}. If
n is the number of spins, the Hamiltonian of the magnetic system is defined as

= oL > wi;SiS; @Z I;S;, (2.10)
i,j#1
where S = (51,5, ... ,Sy) is a global microstate. The w;;’s correspond to contri-

butions from pair-wise magnetic forces and the I;’s represent external magnetic
field values. Adding up the magnetic force contributions from all the other spins
together with the external magnetic force, the total local magnetic field h; for spin
i equals

hi = w;;S; + I (2.11)
J#i
Instead of taking S; € {«<1, 1}, we shall adopt S; € {0, 1} throughout this thesis
because this will facilitate the mapping of combinatorial optimization problems
on Ising models®.
Substitution of (2.10) in (2.2) yields as partition function of the spin glasses sys-
tem

Zsg =Y _exp(B(3 Y wi;SiS; + ZI S;) (2.12)
S i,jF#1

The thermal average (S;) can be stated as

sl:Zl > [Siexp(B(3 > wi;SiS; +ZIS (2.13)
¢ s INE]

Knowing Z as a function of the I;’s, (S;) can directly be obtained by differentia-
tion conform

1 07y Taln Zsg
BZss 0I; B oI;

(Si) = (2.14)

4Conversion from the one binary system to the other one, vice versa, is easy. Taking S} € {—1,1}
and S; € {0, 1}, it follows that Sg = 2S; — 1. The choice between the two types is a matter of mathe-
matical convenience effecting the values of the quantities w;; and I; somewhat. Of course, this slightly
modifies the physical meaning of these quantities too.
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Writing P(S; = s1,S52 = S2,...,S, = sn) = P(S) and P(S; = s;) = P(S;), where
s; € {0,1}, the free energy (2.9) becomes

Fy(P) =) _P(S)(} > wiSiS; > LS+ % > P(S)InP(S). (2.15)
S

i,j#i i s

If all values w;; are positive, the system is called ferromagnetic and parallel spins
are energetically favored. In thermal equilibrium, above a certain critical tem-
perature T, the thermal fluctuations will beat the magnetic interactions making
Vi : (S;) =~ 0.5, and the material loses nearly all its magnetization. Below T,
the magnetic interactions beat the thermal fluctuations in a certain degree mak-
ing Vi : (S;) # 0.5. Depending on the values of the w;;’s, the I;’s, and T, the spins
are found predominantly up or predominantly down. In the presence of an exter-
nal magnetic field, the system will always be oriented in the direction of that field.
In the absence of such a field, the system shows a time-independent ‘spontaneous’
magnetization [64], whose direction is not known in advance. It is also said that
the ferromagnetic system exhibits a ‘phase transition’ at T..

If instead, the values w;; are negative — which often is the case when Hop-
field networks are used to solve combinatorial optimization problems — the sys-
tem is termed anti-ferromagnetic. Depending the values of the w;;’s, the I;’s, and
T, nearby spins now tend to become more or less anti-parallel [64], meaning that
neighbouring S;’s will be found in ‘opposite’ states (i.e., 0 and 1). If the third pos-
sibility holds that certain w;; are positive and other ones negative, the system has
conflicts (also called frustration) with regard to the global orientations. The con-
sequence is a system with several non-equivalent meta-stable global states [76].

2.1.4 Statistical dynamics and annealing

As mentioned in the beginning of this chapter, statistical mechanics especially
deals with the equilibrium properties of a system. The driving mechanism by
which the particles of the system —on account of their mutual interaction — are di-
vided over the available energy levels resulting in dynamic equilibrium, is often
ignored. However, applying numerical simulations (as is often done when ana-
lytic methods are inadequate), a dynamic rule has to be chosen in advance. It ap-
peared to be possible to construct various (both deterministic and probabilistic)
dynamics having the property of leading to thermal equilibrium. In the proba-
bilistic case®, the chosen algorithms frequently have the property that the proba-
bility of finding the system in state «; only depends on the preceding state o;_1
(and not on the history prior to state o;_1). These algorithms are completely de-
scribed by the transition probabilities

Pi(a,a') = Play = ' | ay—1 = ). (2.16)

In practice, many of the transition probabilities corresponding to the selected dy-
namics are zero.

5The deterministic case we shall meet in section 2.3.



22

Starting points

If the algorithm is ‘ergodic’ (meaning that any state is reachable from any other
state by way of a finite number of intermediate states), and if the transition prob-
ability satisfies the so-called detailed balance condition

Py(a,a') e PHe = P (o', a) e PHar | (2.17)

the system relaxes to equilibrium from an arbitrary starting state [64]. The condi-
tion (2.17) does not specify the transition probability uniquely. A very common
choice in simulations is the Metropolis algorithm [44, 89], which applies the tran-
sition probability

1 if AH <0

e PAH  otherwise, (2.18)

Py(a,a') = {
where AH = H, < H,. We see that a transition from state o to ' is accepted
with probability 1 if the corresponding change of the Hamiltonian is negative. De-
pending on a probabilistic outcome, the transition may also be accepted if the cor-
responding energy change is positive. The underlying idea of this strategy is that
the algorithm may escape from local minima. The Metropolis algorithm satisfies
the detailed balance condition so that, at a fixed temperature, it leads to thermal
equilibrium.

In condensed matter physics, ‘annealing’ is a technique for obtaining low en-
ergy states of a solid in a heat bath. The process consists of two steps:

¢ Increase the temperature of the heat bath to a value at which the solid melts.

o Carefully decrease the temperature of the heath bath until the particles ar-
range themselves in the ground state of the solid.

The physical annealing can be simulated using computer power yielding what
is called simulated annealing. The most common approach is just to apply the
Metropolis algorithm, where the temperature is decreased step by step. The tem-
perature is called the control parameter. Using Markov chains, asymptotic con-
vergence of the algorithm has been proven [2]. Furthermore, a lot of empirical
performance analysis has been done in order to get practical, finite-time approxi-
mations. The algorithm has been used to solve, among other things, combinatorial
optimization problems.

2.1.5 Mean field theory

Beside simulation, there exist various analytic techniques [64, 89] in order to un-
derstand statistical mechanical models like the ‘power series expansions’, the
‘real normalization group’, the ‘field theoretical approach’ and, the simplest one
termed the ‘mean field approximation’. The essential ingredient of the mean field
theory is the neglect of thermal fluctuations of the individual neurons. Instead,
one considers the average effect of these fluctuations. One starting point of mean
field theory is the principle of minimal free energy. Instead of looking for the true
minimum of the free energy (2.9), certain restrictions are imposed on the proba-
bility distribution.
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An example consists of a mean field analysis of the spin glasses with Hamiltonian
(2.10), where (w;;) = (wj;). Using the simplest approximation, the probability
distribution is assumed to be factorized meaning that the spins are treated as in-
dependent described by

P(S)=P(S1)P(S2)...P(Sy). (2.19)

Referring to the average magnetization (S;) as V;, it follows that P(S; = 1) = V;
and P(S; = 0) = 1 &V;. Using all this, we can write

E(P) = > P(S)H(S)
S
S

i,j#i i

= LY P(S)HP(S;) > wi;SiS; &Y P(S)Y LS;
S;S; i,j#i S; i

= ol Z wi; ViV ®Z LV, (2.20)
IRE i

S(P) = &Y P(S1)P(S2)... P(Sp)(In P(S1) +In P(Sy) + ... + In P(S,))

S

= &) (VilnV; + (1 &V)In(1 &V))). (2.21)

(3

Under the conditions (2.19), the free energy of the spin glasses can thus be stated
as

Fogoe(V) = &3 Z wi; ViV ©Z LV +
i,j#i i
1
L3 (VilnVi + (1 &V5) In(1 V). (2.22)

The necessary condition for finding a minimum of F,,; yields (using w;; = wj;)

1,V
OFig,c/OVi = &> wi;Vi &I+ —In—— = 0. (2.23)

J#i folel

Resolving this equation, we finally find that at thermal equilibrium

1

V=90 = Ty

A b= wiVi + T, (2.24)
J#i

where £; equals the effective magnetic field. The function gz is the sigmoid or lo-
gistic function (see figure 2.1). For high values of the temperature T = 1/3, we
see that V; ~ 0.5, which corresponds to the outcome of the analysis of the ex-
act free energy (2.15): the system is almost completely disordered. For low val-
ues of the temperature, the sigmoid function approximates the step or Heaviside



24

Starting points

1
10 2/1- -
0.8
—///’-
_ 0.2
gs(h; 0.5 E =
a(hi) - 0.01
——/////
0 — | \
-6 -4 -2 0 2 4 6
T

Figure 2.1: The logistic function for various values of §.

function implying that, on average, the spin i equals 0 or equals 1 depending
on the value of the effective magnetic field: the system shows an ordered struc-
ture. Despite the simplicity of the expressions, the mean field approximation has a
rich structure. Many physical phenomena like spontaneous magnetization, phase
transitions, stability, metastability and unstability, can be described by the model
[64, 89].

Comparing (2.11) and the second expression in (2.24), we see that the first, ex-
act equation takes the spin fluctuations into account, while in the second one, the
fluctuations S; are replaced by their average value V;. In other words, the stochas-
tic magnetic field is replaced by an effective field as given by its mean field approx-
imation.

2.2 Combinatorial optimization

2.2.1 Definition and complexity

Solving combinatorial optimization (i.e., either minimization or maximization)
problems deals with the determination of the ‘best’ solution among a set of alter-
native solutions. In case of minimization, a combinatorial optimization problem
can be defined [34] as a minimization problem consisting of a set of problem in-
stances. For each instance, there is a finite set S. of candidate solutions, where a
cost function f : S, — R exists that assigns a real number (the solution value)
to each candidate solution ¢ € S.. An optimal solution is a candidate solution ¢*
such that

Ve e S.: f(c*) < f(o).

Candidate solutions can often be described by means of bond variables and the
optimization problem as a whole is often described by a ‘constrained’ combinato-

(2.25)
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rial minimization problem, stated as

minimize f(z)
subjectto: Cyu(z)=0,a=1,...,n, (2.26)
where z = (z1,22,...,2,). The Cy(x)’s are the so-called constraints to which

candidate solutions are subjected.

Over the years, it has been shown that many combinatorial optimization prob-
lems belong to the class of so-called AP-hard problems. For several reasons [34],
it is generally believed that all problems of this class are ‘intractable’ meaning that
there exist no algorithms with running time polynomial in the input size. In prac-
tice this means that optimal solutions of ‘large’ instances of this type of problems
cannot be obtained in ‘reasonable’ amounts of computation time.

2.2.2 Examples

Among all combinatorial optimization problems, the traveling salesman problem
(TSP) — which has been proven to be A"P-hard - is probably the best known. A
problem instance of the TSP consists of n cities and an n x n-matrix (d,,), whose
elements denote the distance between each pair (p, q) of cities. A candidate solu-
tion is a ‘tour’, which is a closed path along all cities with the constraint that each
city is visited exactly once. The goal is to find a tour of minimal length.

Another combinatorial optimization problem, which will also be tried, is the
‘weighted matching problem’ (WMP). An instance of the WMP consists of n (n be-
ing even) points again with known mutual distances (d,,). A candidate solution
is given by a state, where the points are linked together in pairs, with (the con-
straint of) each point being linked to exactly one other point. The goal is to find
minimal total length of the links. Unlike for the TSP, for the solution of WMP exist
fast polynomial algorithms [44].

2.2.3 Solving methods

Since many AP-hard optimization problems are of practical interest, a lot of ef-
fort has gone into solving them one way or another. The solution strategies can
be roughly divided in two categories [34]. Applying an algorithm of the one cat-
egory, it is tried to obtain an improvement over the straightforward exhaustive
search approach. Examples are methods based on ‘branch-and-bound’ or ‘back-
tracking’ consisting of a tree-structured search bounded by recognizing that some
partial solutions can impossibly be extended to actual solutions or to solutions of
better quality than the best one already found. Other approaches of this category
apply alternative ways of organizing the search like ‘divide and conquer’ and ‘dy-
namic programming’ methods [52]. Applying the first of these two approaches, a
problem is split into smaller ones, the smaller problems are resolved (by recur-
sively applying the same technique), and their solutions are combined into the
solution of the original problem. Applying dynamic programming on the other
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hand, the solution of a problem is built stage-wise, where at each stage a new as-
pect of the problem is added until the solution to the original problem has been
found.

The other category of algorithms apply a ‘heuristic’ approach, where it is at-
tempted to find a ‘good’ solution within an acceptable amount of time. ‘Local
search’ algorithms [1] are an example of this category. These algorithms take some
solution and search over a set of neighbouring solutions, in this way trying to find
solutions of lower cost.

Within the two classes, it is possible to distinguish between ‘tailored’ and ‘gen-
eral’ algorithms [2]. Tailored algorithms use problem-specific information (do-
main knowledge) and their applicability is therefore often very limited. Instead,
general algorithms are appropriate to a wider variety of problems and it is of high
importance to discover general methods which — as a rule — perform well. In the
last decade, several new general search algorithms have emerged, all inspired by
optimization principles observed in nature. They are simulated annealing, ‘ge-
netic’, and neural network algorithms. Solving combinatorial optimization prob-
lems using simulated annealing (section 2.1.4) is based on the assumptions [2] that
(a) solutions in the optimization problem are equivalent to states of a physical sys-
tem, and (b) the cost of a solution is equivalent to the energy of a state.

Genetic algorithms [36] try to solve problems based on the principles of natural
evolution. The algorithm keeps up a population of candidate solutions. New gen-
erations of candidate solutions are successively created applying ‘selection’, ‘mu-
tation’ and ‘crossover’ operations, where the ‘fittest’ solutions have the highest
probability of being selected. It is hoped that the fitness of the population mem-
bers gradually improves and, finally, a member among them is found with op-
timal fitness. The assumptions for applying genetic algorithms to combinatorial
optimization problems are that (a) candidate solutions of the optimization prob-
lem can be represented as population members (and therefore can be selected, mu-
tated, and crossed over), and (b) the cost of a solution is equivalent to the fitness
of the corresponding population member.

This last class of algorithms refers to neural networks, whose relevant types
are introduced now.

2.3 Classical Hopfield models

2.3.1 The asynchronous model

In 1982, Hopfield® showed how useful, computational properties can emerge as
collective properties of neural systems [46]. The collective properties of his neu-
ral network produce a content-addressable memory. Each neuron S; has two (out-
put) states: S; = 0 or S; = 1, the other neural quantities are equivalent to those
defined in section 1.1.4. The iterative algorithm for the time evolution of the sys-

6To be somewhat more exact historically, Hopfield’s binary model is a stochastic reinterpretation of
an earlier model by Amari (1977). The difference lies in the way the neurons are updated: in Amari’s
model this is done synchronously, in Hopfield’s model this is assumed to occur asynchronously [54].



2.3 Classical Hopfield models

27

temstate’ S = (Sy,...,S,) € {0,1}"can be formulated as (compare the equations
(1.2) and (1.3))

1ifuP =3 wi i SO 4+ I > py

pew — 2 7 1] 7 1 (2

Si { 0 otherwise, (2.27)

where p; represents the threshold value of neuron ¢ and where each neuron read-
justs its state randomly in time but with equal mean rate. The importance of Hop-
field’s approach stems from his proof on stability considering the energy function

Ea(S) = @% Z wijSiSj @Z I;S; + Z uZSZ (228)
i,] A A

Theorem 2.1 (Hopfield). If (w;;) is a symmetric matrix and Vi : w;; > 0, then the
energy function (2.28) is a Lyapunov® function for motion equations (2.27).

If all threshold values pu; equal zero, then E,(S) nearly coincides with equation
(2.10). In addition, U; corresponds to the local magnetic field h; in (2.11).

The asynchronous character makes the flow of the system not entirely deter-
ministic, but in any case, the algorithm leads to a final attractor (like a memory)
near the starting state. Stated in other words, the algorithm ends up in a local min-
imum. It explains the suitability of this neural network to model an associative
memory.

2.3.2 The continuous model

In 1984, Hopfield generalized the asynchronous model to a deterministic one [47]
using continuous-valued neurons with input values U; € R and output values
V; € [0, 1]. Instead of using an iterative updating rule like

ypew — g(UiOId) — g(z wijVjOld + 1), (2.29)
J

Hopfield introduced the updating rule (motion equation)

- OE.(V)
c;U; = W = ;wiﬂ/} + I; &U;, (230)

where continuously V; = ¢(U;) holds and where ¢; represents a suitable time con-
stant. In our simulations, we shall approximate the time derivative of U; by writ-

ing

AU;

U; ~
A

(2.31)

" Another, wider view on the notion of a ‘system state’ will be discussed in section 3.3.1.
8The notions of ‘stability’ and ‘Lyapunov function’ come from the theory on ‘dynamic systems’: see
appendix B.
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and then choose an appropriate value of At. If we confine ourselves to equal val-
ues for all ¢;, no further restrictions are introduced if we simply take Vi : ¢; = 1.
So, this will be done. The updating rule (2.30) can be derived using the circuit
equations of an analogue electrical circuit implementing the continuous Hopfield
model: it represents a resistance-capacitance charging equation that determines
the rate of change of U;. Mathematically, as denoted in equation (2.30), it can be
derived applying the technique of gradient descent (appendix C) to the energy
function E.(V') which is defined conform

Vi

&3 Zwijvivj bz IiVi+Z/ g (v)dv (2.32)
i,j i i 70

- E(V) + E.(V) . (2.33)

Here, E(V') is the energy function to be minimized. The second term, E;, (V'), will
be called the ‘Hopfield term’. V' € [0,1]" is the state vector (V4,...,V,,) of the
continuous neural net. We further note that U; = 0E, /0V;. In figure 2.2, a picture

E.(V)

i
Wit p— ] ba
: Zj U, g Vi
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Figure 2.2: The continuous Hopfield network with equilibrium condition:
Vi:U; = Zj wi]-Vj + I; and V; = g(Uz)

of the continuous Hopfield model is given. It can be used to explain the working
of the motion equations (2.30). After initialization, the network is generally not in
an equilibrium state. Then, while keeping the relations V; = ¢(U;) valid, the input
values U; are adapted in agreement with (2.30). The following theorem, proven by
Hopfield [47], gives conditions for which an equilibrium state will eventually be
reached:

Theorem 2.2 (Hopfield). If (w;;) is a symmetric matrix and if Vi : V; = ¢(U;) is a
monotone increasing, differentiable function, then E; is a Lyapunov function for motion
equations (2.30).
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Under the given conditions, the theorem guarantees convergence to an equilib-
rium state of the neural net where

Vi:Vi=g(U:) AU =Y wi;Vi+1. (2.34)
J

If the sigmoid function is chosen as the transfer function g, we see that expression
(2.34) almost coincides with (2.24).

In his article, Hopfield dwells on the relation between the energy E, of the
asynchronous model and E. of the continuous one. In order to understand the
relationship, he introduces a scaling factor g3 (in the original paper denoted by )\)
replacing V; = ¢(U;) by V; = ¢(8U;). He then argues that, in the high-gain limit
8 — oo, the Hopfield term E;, becomes negligible, making the locations of the
extrema of E. and E, almost equal. Next, he remarks that for large but finite 3-
values, the Hopfield term begins to contribute, leading to an energy surface whose
maxima are still at corners of the hypercube [0, 1], but whose minima are slightly
displaced toward the interior. We will return to these aspects in section 3.2.2.

The conditions given in theorem 2.2 do not uniquely specify the transfer func-
tion g of a neuron. Commonly used functions include the tanh for the [<1, +1]
range (used, e.g. in [68], in the iterative way given by equation (2.29)) and the sig-
moid function (2.24) for the [0, 1] range. We shall meet other activation functions
later on.

2.3.3 The stochastic model

It is possible to make the neurons of the binary asynchronous network behave
stochastically® [44] applying a stochastic evolution rule like the transition prob-
ability (2.18) of the Metropolis algorithm. Instead, in the context of neural net-
works, another form is usually chosen that is suitable for parallel computation [3]:
regardless of the previous state, the probability of setting S; = 1 is taken

1

PSi=1) ==

(2.35)
The units are selected in the same asynchronous way mentioned in section 2.3.1.
It is not difficult to check [44] that the updating rule (2.35) leads to a transition
probability which satisfies the detailed balanced condition (2.17). So, the stochas-
tic Hopfield model is expected to reach thermal equilibrium conform the Boltz-
mann probability distribution. It is therefore sometimes called a Boltzmann ma-
chine with a priori chosen weights [44]. As the Metropolis algorithm makes it pos-
sible to escape from local minima, so the stochastic rule (2.35) does. This observa-
tion has suggested the idea trying to use stochastic Hopfield networks in order to
find global minima of optimization problems. Besides, annealing can be applied
by decreasing the temperature gradually during execution yielding a new form
of simulated annealing.

9still another possibility is to make continuous neurons behave stochastically [37].
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The asynchronous Hopfield model can be considered a special case of the stochas-
tic one: at very low temperatures, the noise level (i.e., the level of the thermal fluc-
tuations) is negligible reducing the stochastic model to the asynchronous Hopfield
model. This can be understood mathematically by observing that for 3 — oo the
sigmoid function (2.35) reduces to the step function as defined in (2.27). The con-
tinuous and the stochastic Hopfield network are also related. Because the energy
expressions (2.10) of the Ising model and (2.28) of the stochastic Hopfield model
almost coincide, a mean field analysis of the last one can be done precisely con-
form the analysis of section 2.1.5, yielding the equilibrium equations (2.34). This
proves the following theorem:

Theorem 2.3. The equilibrium states of the mean field approximation of the binary
stochastic Hopfield model coincide with the equilibrium states of the continuous Hopfield
model, if, in the last model, the sigmoid function is chosen as the transfer function of the
neurons.

In the literature [68, 44], several other proofs can be found which usually adopt
the ‘saddle point approximation’ (see section 3.1). The theorem makes clear that
the binary stochastic neural network can be approximated by the continuous one,
or, stated more precisely [68]:

“The hill-climbing property of the stochastic model at non-zero temperature
can be cast into a deterministic procedure in a smoother energy landscape.”

Consequently, if the networks are simulated on a sequential computer device, the
problem of excessive computer time of the stochastic model is hoped to be cir-
cumvented applying the approximating, continuous model: the deterministic re-
laxation rule (2.30) is expected to converge much faster than the stochastic rule
(2.35) 1, If, in addition, annealing is applied, the simulated annealing approach
of the stochastic model reduces to, what has been termed ‘mean field annealing’
[44, 50, 68, 69, 70]. Then, on lowering the temperature, fine details of the original
cost function E(V') gradually appear [77].

2.4 Hopfield networks and optimization

This section is meant to give a concise background on the application of Hopfield
networks in the field of combinatorial optimization. We shall return to many as-
pects later on.

As for simulated annealing and genetic algorithms assumptions have been for-
mulated to solve combinatorial optimization problems in a heuristic way (section
2.2.3), so this can be done for Hopfield neural networks. Here, the assumptions
are that (a) candidate solutions of the optimization problem are equivalent to net-
work states, and (b) the cost of a solution is equivalent to the energy value of the

10 Alternatively, the deterministic iterative rule (2.29) can be chosen: experiments of this type have
shown significant speedup factors, together with comparable and sometimes even better quality of
solutions [68, 70, 43].
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network. Since 1985 [48], researchers have tried to use both stochastic and contin-
uous Hopfield networks in the field of combinatorial optimization. The general
problem can be stated like (2.26), where the cost function f(x) should be replaced
by an energy function E(x):

minimize E(x)
subjectto: Cu(z) =0, a=1,...,m, (2.36)

z being the state vector (S or V) of the neural net. There exist different ways in
treating the constraints. The oldest approach consists of a so-called penalty method,
sometimes called the ‘soft’ approach [77, 69]: extra ‘penalty’ terms are added to
the original energy function, penalizing violation of constraints. We nowhere
found a precise definition of the penalty method. Having collected many exam-
ples, we think the following characterization reflects the issue at stake: the penalty
terms are weighted and chosen in such a way that

m
E ¢aCq(z) has a minimum value zero <
a=1

x represents a valid solution. (2.37)

A valid (admissible, or feasible) solution is defined as a candidate solution which
complies with all submitted constraints. Usually, the chosen penalty terms are
quadratic expressions. Applying a continuous Hopfield network, the original
problem (2.36) is converted into

minimize E,(V) = B(V) + Y _ caCa(V) + En(V), (2.38)
a=1

E(V)and E; (V) being given by (2.33). The corresponding updating rule is:

. 0B, _OE 9C. .
U; = A @; ca gy sU;, (2.39)

where, in case of (wi;) = (wj;), €OE/0V; = 3, wy;V; + I;. We already know
from Hopfield’s analysis (section 2.3.2), that the influence of the Hopfield term
EL (V) may be small. Ignoring this term for the moment, the energy function E,
is aweighted sum of m+1 terms and hence a difficulty arises in determining correct
weights ¢,. The minimum of E, is a compromise between fulfilling the constraints
and minimizing the original cost function E(V'). Applying this penalty approach
to the TSP [20, 48, 49, 88], the weights had to be determined by trial and error.
For only a small low-dimensional region of the parameter space valid tours were
found, especially when larger problem instances were tried''.

In a second approach, the features of the neural net are changed. The alter-
ation is usually done in such a way, that some or all constraints are automatically

1 Aside we mention that for ‘purely combinatorial problems’ (by which we mean combinatorial
problems without a cost function to be minimized like the n-queen problem and the 4-coloring prob-
lem), the penalty method has proven to be useful [82]. See also section 2.7.
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fulfilled. This way of dealing with the constraints is sometimes called the ‘strong’
one [77]. As an example, observe the following constraint

> Siel=0. (2.40)

A consequence of (2.40) is that precisely one of the binary S;’s equals one, all the
other ones being 0. Physically, this model is related to Potts glasses. Trying to
solve the TSP, condition (2.40) can be used several times in order to guarantee that
all cities are visited once. The other condition —that two cities are never visited at
the same time — can be fulfilled in the soft way using penalty terms. A mean field
annealing approach using an iterative updating role of the form

e _CXD(EBUP)
! Dok exp({:)ﬁU,‘:ld) ’

has shown ‘encouraging’ results: experiments for problem sizes up to 200 cities
yielded solutions with a quality comparable to and sometimes even better than
the simulated annealing one. Besides, stability analyses including an estimation
of the critical temperature (at which a phase transition takes place corresponding
to a rapid drop of the energy in the system) have been reported [85, 69, 70, 78].
Another way of implementing the constraint (2.40) is to use so-called ‘maximum
neurons’ defined by

(2.41)

S = { 1 ifU; =max{l,...,U,} (2.42)

0 otherwise.

They have been applied for, among other things, finding near-optimum solutions
of ‘channel routing problems’ [82]. Another way of changing the features of the
neural net has been the introduction of an extra layer. In an attempt to solve the
TSP [51], a first layer was chosen conform a continuous Hopfield network where
the penalty term is based on city adjacency in the tour. The second layer of the
network had to detect, in parallel, closed sub-tours of intermediate solutions. Un-
fortunately, the implementation of the second layer is more complicated than was
indicated.

A third way of treating the constraints was introduced in 1988 [71]. Here, the
starting point is the multiplier method of Lagrange (appendix A), where a con-
strained optimization problem is converted into an unconstrained extremization
one: a solution of the general problem (2.36) is also a critical point of

Epb(V,A) = E(V) + i AaCo(V), (2.43)
a=1

where )\ is a vector of multipliers (A, - - , A\;y). Contrary to the requirement (2.37)
used in the penalty approach, the constraints should now be formulated such that

Va : Co(x) = 0 < z represents a feasible solution. (2.44)
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Moreover, the multiplier values are not supplied by the user, but, after having
been initialized, are determined by the system itself: conform the so-called ba-
sic differential multiplier method (BDMM), the values of the Lagrange multipli-
ers can be estimated applying a gradient ascent'?. The complete system of motion
equations of the model equals

;o apr _ oF %
Vi =egs = @a—w@;xa v (2.45)
xa=+%§pb = C.(V). (2.46)

Stability can be analyzed by combining both of these differential equations into
one second-order differential equation, which describes a damped harmonic mo-
tion. The total energy of the mass system consists of the sum of kinetic and poten-
tial energy given by

Buintpot = »_ sV + Y 3C2(V). (2.47)
i o

Theorem 2.4 (Platt & Barr). If the damping matrix (a;;) defined by

0’FE 92C,
Aj5 = W + 8 QW (248)

is positive definite, then the energy (2.47) is a Lyapunov function for motion equations
(2.45) and (2.46).

Using the definition of E(V') as given by (2.33), itis clear that if (w;;) is symmetric
then
0’FE
oV;0V;

We further note that in formula (2.45) the gradient descent on E,, is equated to the
time derivative of V; and not of U;, as is done in the continuous Hopfield model.
Moreover, the term «U; is lacking and, corresponding to this, the Hopfield term
E, (V) in (2.43) is missing. The necessary steps to bring these things into line with
one another were made in 1989 and are explained in the next section.

2.5 The Hopfield-Lagrange model

By adding the Hopfield term E;, (V) to the energy E,,(V, A), the continuous Hop-
field model and the Lagrange multiplier method were integrated [86] in what we
shall call the Hopfield-Lagrange model. The model was used to solve the Multiple
TSP (MTSP). The MTSP is an extension of the TSP, where a set of minimal closed

12The background of this sleight will be illuminated extensively in chapter 5.
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routes should be found for a given number of salesmen. The constraints are sim-
ilar to those of the original TSP. In general terms, the energy of the model is given

by
Ea(V,)) = EV)+> XaCao(V)+ En(V) (2.50)

SN wViVi &Y LVi+ Y MaCa(V)+En(V)  (251)
iy J i a

with the corresponding set of differential equations

. OFn 0C,
U; = b—avi = Ej wiiVi + I; & Ea )\aa—Vi Ui, (2.52)
da=+50 = CalV). (2.53)

In the literature, little attention has been paid to this model. We did not find an
analysis of the stability of the differential equations (2.52) and (2.53) anywhere.
In case of the Multiple TSP, six coupled differential equations had to be resolved,
whose stability properties were ‘in the process of investigating’ based on the Lya-
punov function (2.47). By numerical simulation using a first order Euler method,
good solutions have been found for certain small problem instances up to 20 cities
and 4 salesmen.

2.6 Elastic nets

The ‘elastic net’ [28] deals with a specific type of neural network, namely one for
solving the TSP. The elastic net algorithm (ENA) was derived from a hypothetical
‘tea trade model’ [59] for the establishment of topographically ordered, neighbor-
preserving projections'®. The energy function to be minimized of the elastic net
equals:

m n m

Een(z) = %2 Z | 2t ot |? &% Zanexp(fTﬁ2 | 7, ©ad ?). (2.54)

i=1 p=1 j=1

Here, x? represents the i-th elastic net point or ‘bead’ and z,, represents the loca-
tion of city p. The succeeding m elastic net points form a sort of elastic rubber ring,
that should be dragged along all n cities. The first term of E., equals the sum of
distance squares between succeeding net points (which, in a sufficient degree, cor-
responds to the tour length), while the second term enforces a match between each
city and one of the elastic net points. Application of gradient descent to equation
(2.54) yields, after a discretization step, the updating rule

Azt = %(:ﬂ“‘l 22+ 27 + g Z AP (i) (zp &), (2.55)
P

13Making topology preserving maps is part of the ‘unsupervised learning’ approach of neural net-
works [44].
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where the time-step At = 1/ equals the current temperature T' and where AP ()
is defined conform

Ar(i) = SR Loy &t P)
i) = .
> exp(<::>’%2 | 2, ez |?)

(2.56)

The ENA has an important scaling property: the number of variables (i.e., the two-
dimensional net points) required is linear relative to the number of cities, while in
case of the Hopfield model the number of neurons needed is usually quadratic
relative to that number.

In practice, all z,, are normalized to points in the unit square. The elastic net-
work is usually initialized in a small ring in the middle of that square. Taking
m = 2.5n, the following parameter values appear to be efficient [28]: a; = 2.0
and ay = 0.2. The initial value of the temperature T = 1/3 is set to 0.2, and is
reduced by 1% every n iterations to a final value in the range 0.01-0.02. The gen-
eral effect of this lowering is that large-scale, global adjustments occur early on,
resulting in a general stretching out of the elastic net. This initial stretching out is
strongest to regions in the unit square having the highest concentration of cities.
Later on, smaller refinements occur corresponding to an increasingly local adap-
tation of the elastic net towards city points. Eventually, every city must be ‘vis-
ited’ by one bead. In [28, 44], a picture can be found of the gradual stretching out
of the elastic net. Up to several hundred cities, the ENA yields sub-optimal so-
lutions where the final tour-lengths exceed the optimal lengths by approximately
6% [78]. The results strongly depend on the chosen parameters and the algorithm
may end up in a non-valid state.

In 1990, two papers have been published on the relationship between elas-
tic and Hopfield neural nets. One paper [77] suggested statistical mechanics as
the common underlying framework, to which (in our view incorrect) analysis we
shall return extensively in chapter 6. There, we shall also take stock of the other
proposed common framework [90], namely that of ‘generalized deformable tem-
plates’. The ENA has also been modified in many ways in other to improve the
performance quality with respect to both the shortest tour found and the percent-
age of valid solutions encountered: see, e.g., [78, 31, 5, 22].

2.7 Computational results from the literature

Besides the afore-mentioned applications, many other achievements have been
gained in the field of (combinatorial) optimization and of association using Hop-
field type neural networks. We here give a notable but not exhaustive list of ex-
amples.

e The book of Takefuji [82] contains several practical problems which
have been tackled and resolved quite successfully using Hopfield
networks of various types, e.g., networks with alternative transfer
functions. Besides solutions of the n-queen and the k-colourability
problem, near-optimal solutions of ‘graph planarization’ and ‘channel
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routing’ problems (both important topics in designing printed circuit
boards) are presented. Furthermore, ‘RNA secondary structure pre-
diction’, ‘tiling’, ‘sorting and searching’, ‘broadcast scheduling’, and
various other problems are discussed including their computational
results.

Neural computational results of the TSP and the WMP (section 2.2.2)
as well as solutions to the ‘graph bipartioning’ and to the ‘reconstruc-
tion of an image’ (from noisy or blurred data) can be found in the
textbook [44], with a lot of references belonging to them. In fact, in
the proceedings of any large recent international conference on neu-
ral networks, one often encounters an article containing a new attempt
to tackle the TSP. A recently encountered example is [24], which ap-
plies so-called ‘higher order’ neural networks and which appears to
be quite related to the analysis as given in chapter 4 of this thesis (see
the discussion at the end of section 4.3.3).

Similarly, higher order neural networks were applied in the context of
process scheduling in flexible manufacturing systems [80]. Other ex-
amples of scheduling problems resolved by using Hopfield neural net-
works, can be found in [70, 81]. The first of these references describes,
among other things, neural solutions to the determination of a time-
table for teachers and classes in a high school, the second discusses a
neural solution to an assortment problem as found in the iron and steel
industry.

In [55], two applications of Hopfield neural networks in the field of vi-
sion are given, the first one on ‘texture segmentation’ of images (where
the segmentation problem is formulated as an optimization problem),
the second one on ‘image restauration’ (from a recording which is de-
graded in one way or another). Comparisons to other methods are
given. Image restoration by Hopfield networks has become a popu-
lar area of research as it is, see e.g. , the proceedings of ICNN’95.

Between other neural network applications in the area of high-speed
communication networks (where the ‘asynchronous transfer mode’
technology is the standard), ‘optimized routing’ and ‘optimal packet
scheduling in input queues’ by means of recurrent neural networks are
discussed in [65], including their hardware implementations.



Chapter 3

Unconstrained Hopfield
networks

In this chapter, we start trying to attain the first object of study as mentioned in
section 1.2.2. Most part of it is devoted to the study of the continuous Hopfield
model as introduced in section 2.3.2. We start offering an alternative derivation
of theorem 2.3 (on the mean field approximation of the stochastic model) yielding
some old and several new approximations of the free energy of the system. Next,
we analyze the properties of these approximations and their relation to the cor-
responding continuous model. In a third section, we generalize this continuous
model in two steps, eventually culminating in a very general framework. Finally,
we report the results of simulations that were set up in order to test some of the
theoretical conjectures.

Some parts of this chapter have been published earlier in [9, 14, 15, 17] or will
be published soon [11]. A large part has also been recorded in the technical reports
[13, 16].

3.1 The mean field approximation revisited

A mean field analysis of binary stochastic Hopfield networks was described in
chapter 2. Here, we shall deal with an alternative mean field analysis yielding
various approximations of the true free energy. These expressions will turn out
to be very useful later on. To reach our goal, we adopt (a slightly modified ver-
sion of) an approach given by Simic [77]. One difference between his and our ap-
proach concerns the way the external fields I; are treated: he includes small ‘gen-
erating fields’ [76] in the expression of the partition function (2.2), which are set
to zero during the derivation. We use real external fields I;, conform equation
(2.28), which remain in the formulas. Unlike Simic, we start analyzing the orig-
inal (unconstrained) binary Hopfield model.
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Theorem 3.1. If (w;;) is a symmetric matrix, then a mean field approximation of the free
energy of stochastic binary Hopfield networks can be stated as

Fu(V)=13% ZwijViVj @% Zln [1+exp (,B(Z w;; Vi + 1)),
J

,] i

(3.1)
where the stationary points of F;,; are found at points of the state space for which

1

Vi : sz = 1 +€_B(ZJ‘ o Vit

(3.2)

Proof. The proof applies certain lemmas, whose precise formulation and demon-
stration can be found in the appendix D. As usual, the starting point of the sta-
tistical mechanical analysis is the partition function (2.2), where, in this case, the
Hamiltonian equals the energy of the binary Hopfield model as defined in (2.28).
Thus, we have

Znw =Y _exp(B(3 Y wi;SiS; + 3 I:S:)). (3.3)
S i,j i

To be able to perform the summation in the partition function, the exponentials in
the quadratic terms S;S; are turned into exponentials that are linear in the S;’s by
using lemma 1 with the plus sign®. This yields

X OS piwthj + ;Si(di + I ;Ao
Zhuzzfep[@;zww]@ B S+ )| T1 % e

S feXp [®§ Zi,j ﬁbiwi_jlﬁbj] sz@
where the w{jl’s represent the elements of the matrix inverse of (w;;) and where
the domain of integration of both (improper) integrals equals R*. In analyses of
this kind, the integrals are often expanded around the point which maximizes
the integrand. The point is called the saddle point [44]. We shall apply this sad-
dle point approach in two ways. First, we calculate the saddle point for every
state S and then perform the summation over all states yielding the average <¢3)
of saddle points. This calculation can be done exactly. Second, we change the or-
der of these actions by starting with the summation and, after that, calculating the
(one and only) saddle point ¢ of the summed quotients of integrals. This time, for
mathematical complications, a first-order approximation is applied.

By expanding, for every state, the integrand in the numerator and the inte-
grand in the denumerator of (3.4) around their respective saddle points, it is possi-
ble to recover formula (3.3). This follows in a straightforward way by the applica-
tion of lemma 2 (see also the note after the proof of that lemma). The saddle point
equation of the numerator of (3.4) leads to the formula

;= > w;;S; implying that (i) = D wii(S)) = > wiVi, (3.5)
j J J

J

1in an aside, we note that the condition of symmetry of the matrix (w; ;) of lemma 1 coincides with
one of the conditions for theorem 2.1.
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where (q@i) is the i-th component of the average of the saddle point values of (3.4).

Now we change the order. Summation over all 2" states S in (3.4) yields, using
lemma 3,

[ exp [2 T4y w65 + i (1 -+ exp(B(6s + 1)) T, dos
Jexp [ 2 b o5 T1, o - (36)

hu =

Writing

Bu(¢, ) =3 Y diw;' ¢ 5> In[1+exp (B(¢i + I))], 3.7)
ij i

the saddle point ¢ of the numerator in (3.6) is found by partial differentiation of
Eh11(¢, I) to the ¢i’s, gIVIng

N‘ _ wij

"= ; 14 e B(i+I) (3.8)
Up till now, the calculations have been exact. The question arises how () and
¢ are related. Here, the (first order) saddle point approximation as applied in
lemma 4 turns out useful. Using this lemma, we find

aEhu((ga I) _ 1

Vi & = - .
8[1 1+ e—B(di+Ti)

(3.9)

If we now substitute the approximation (3.9) in the exact formula (3.5), we obtain

(i) ~ ; 14 e B@i+L)" (3.10)

Comparing (3.8) and (3.10), we conclude that

~

(9) ~ 6. (3.11)

In the saddle point approximation of lemma 4, the partition function (3.6) has been
approximated according to

Znu = exp(€BEn (¢, 1)). (3.12)

Using this, we can derive a saddle point approximation of the free energy of the
binary stochastic Hopfield model. The derivation goes like

Fhu = % In Zhu ~ Ehu(é;, I) ~ Ehu((ég), I) = -Ful (V), (313)

2Apparently, (Jm represents the average internal input of neuron 4.
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where the last equality is found by substitution of (3.5). The stationary points of
F,; are found by resolving the equations dF,; /0V; = 0. Again using the symme-
try of (w;;), we precisely obtain (3.2) via

OFn Z“’ Z Bexp(B(3; wi; Vi + Ik))we;
o, Vi <% 1—|—eXp (Z] wi; Vi + 1))
1
= wir (Vi & =0. 3.14
Xkl S (@A, oV + 1) (319

In fact, the equations (3.2) are mean field equations (see theorem 2.3 and equations
(2.24)). Apparently, the first order saddle point approximation and the mean field
approximation such as derived in section 2.1.5 are similar approaches yielding the
same results®. This observation completes the proof. O

We may realize in another way that the first order saddle point and the mean
field approximation are approaches of the same kind. By combining (3.9), (3.11),
and (3.5), the saddle point approximation results in the mean field equations by
recognizing that

1 1 1
1 + e—B($i+Ts) 1 +eBUd) L) 14 e P wiVith)'

(3.15)

Besides, we note that in the final result (3.1), the free energy F,; is written as a
function over V, that is, (just like in (2.9)) over an arbitrary probability distribu-
tion*. Comparing the original Hamiltonian (2.28) and the free energy approxima-
tion (3.1), it is remarkable that a sign flip in the quadratic expression of the S;’s has
occurred. Even more curious is the observation, that the sign flip can be undone
producing the mean field free energy expression (2.22):

Theorem 3.2. If (w;;) is a symmetric matrix, then a mean field approximation of the free
energy of stochastic binary Hopfield networks can also be stated as

Fo(V) = &3> wi;ViV; @ZIV +3 Z (ViInV; + (1 &V;) In(1 &V;)), (3.16)
1Y)

where the stationary points of Fy» coincide with those of Fy;.

Proof. Taking U; = [3(2 w;;V; + I;), lemma 5 states:
ln 1+exp Zw”V —l—[

&V;InV; @(1 &Vi) In(1 V) + 8D wi,;ViVi + LV;).  (3.17)
J

3We notice that the usual argument for the admissibility of the saddle point approximation is that
in the thermodynamic limit (that is for n — oc), the integrals are extremely dominated by the contri-
butions which maximize the integrand [44, 76, 70]. We shall not further explore this here.
4Remember from section 2.1.5 that V; can be interpreted as P(S; =1).
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By combining this result and equation (3.1), the expression (3.16) is found. The
stationary points are found by resolving

OF,
8Vi2 @Z wijVi &I + (0 V; + 1 el &Vi) ©1)
J
v
_ 1 VT iy
= E(@ﬂ(; wijVi + 1) +In 5 @Vi) =0. (3.18)
This yields the mean field equations (3.2). O

3.2 Properties

3.2.1 The relation between F,;; and F,»

We have found two approximations of the free energy, namely F;,; and F;,. This
raises the question of how they are related. Let us start analyzing two simple ex-
amples. We take two binary stochastic Hopfield networks having the Hamilto-
nian

H(S)= 5?8, and Hy(S)=&S?+5,. (3.19)

The first one is the most simple model of an anti-ferromagnetic system, the sec-
ond one of a ferromagnetic system (section 2.1.3). The corresponding free energy
functions are

Faum (V) = &V e5n(l+exp(3(€2Vi +1))) (3.20)
Fom((V) = VeV +5(VilnVi+(1&Vi)n(l W) (3.21)
Fu,m(V) = VP e5n(l+exp(8(2Vi ©1))) (3.22)
Fom(V) = &2 +Vi+5(VilnVi+(1eVi)n(leV)).  (3.23)

The figures 3.1 and 3.2 show the free energies F,; and F,» of Hy, respectively Hs,
for various values of 3. In all cases, the stationary points of F;,; and F},, coincide.

In the left-hand figure, the minima of E}» 71 coincide with maxima of F},q g1, all at
V1 = 0.5. Away from the stationary points, the free energy approximations differ
substantially, where the approximation F,2 g1 looks the better one: H; is a con-
vex function, so a free energy approximation is expected to be convex too since the
energy contribution of noise is convex (section 2.1.2). Moreover, § — oo (disap-
pearing noise) impliesthatVV; € [0,1] : Fy2, i, — H1, while this limiting property
certainly does not hold for Fq 1.

In the right-hand figure, the free energy approximations are more similar while
the extrema of Fyi g2 and Fy» g» have the same character. We also recognize
a phase transition: for high values of T' = 1/8, there exists one minimum at
V1 = 0.5, while at lower temperatures, we see one (metastable) maximum and
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Figure 3.1: Free energies of H; .

Figure 3.2: Free energies of H,.

two (stable) minima, allowing the occurrence of a spontaneous magnetization. Al-
though F,;; performs better now, the approximation by F» g is still better: for
low values of 3, the approximation F» g2 near V; = 0 or V; = 1 is superior.

The indicated attributes concerning the type of the extrema can further be un-
derpinned by inspection of the second derivatives of F; and F;,. Denoting the
solutions of the mean field equations (3.2) by V;, we find for the elements of the
respective Hessians at stationary points:

i ij = 66;% = wi; SB Y wipwy; XL, g i 1)
i0Vj P (1+exp(&B(3; wr; Vi + 1))
= wi &P Z wikwkjf/k(l @Vk), (3.24)
k
2 . ifi £
R AR D i 829
In the present example, in case of H; (where wy; < 0), we find
VB :hyt <0 A hy2 >0. (3.26)

This confirms the (opposite) character of the extrema in the left figure. In case of
H, (where wy; > 0), we find

B<1/2K(1eh)) =2,
B>1/2Vi(1 W) =2.

hut >0 A hyo >0 if
hui <O A hypa <0 if

(3.27)
(3.28)

This confirms the (same) character of the extrema in the right figure. In the mean
time, we have calculated the critical temperature® being T., = 1/8., = 0.5. We

5In this case, the critical temperature can also be calculated by considering the equilibrium equa-
tions 2.34 [44]. They can be writtenas Vi = 1/(1+exp(—8U1)) A Vi = U1+ L. ForT' > Ter = 0.5,
the equations have only one solution Vi = 0.5. For T' < Ter = 0.5, there are 3 solutions.
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further notice that inspection of (3.24) and (3.25) reveals that the noted phenomena
concerning the character of the extrema of F},; and F,» may also occur in other
cases.

Concluding this section, we notice that in general the use of the superior mean
field approximation Fy, is preferred. However, the approximation Fy; will turn
out to be of great theoretical importance in section 3.3.1.

3.2.2 The effect of noise

There is still another way to understand the relationship between the mean field
approximation of the binary stochastic and the continuous Hopfield model. Here,
the starting point is Hopfield’s energy expression (2.32). Taking the sigmoid as the
transfer function, we can elaborate the Hopfield term F,, i.e., the sum of integrals

> fovi g~ (v)dv. Since V; = g(U;) = (1 + e=AYi)~1, we can write

1 1V, .
UZ—%IH( v )=9" Vi), (3.29)
and therefore
Vi
[ o o= A eV oV + Vil V] = w5500, (330)
0

Thus, we have proven the following theorem:

Theorem 3.3. If the sigmoid function is chosen as the transfer function in the continu-
ous Hopfield model, then the energy E. equals the free energy approximation F, of the
stochastic binary Hopfield model. The Hopfield term E}, of the continuous model can phys-
ically be interpreted as the (approximation of the) thermal noise term (:%S of (2.9).

For the specific choice of the sigmoid as the transfer function, we can exam-
ine the effect of the temperature more thoroughly (compare Hopfield’s discussion
as mentioned at the end of section 2.3.2). In figure 3.3, the term (3.30) is visual-
ized at various temperatures. The term is always non-positive and for 5 — oo,
@%S(Vi) — 0, so in the limit of an annealing process, the noise term does not in-
fluence the extrema of the original cost function E(V') of (2.32). For finite values
of 3, minima of E(V) situated in a corner of the hypercube, are displaced toward
the interior (see also figure 3.4). This is true for any finite value of 3 since

or,
ov;

(Vi = 0) = €00 and 222 (1, = 1) = o0, (3.31)
ov;

whereas the partial derivatives of E(V) are always finite. The smaller 3 is, the

larger is the displacement toward the interior.

The displacement noted should be considered a pretty feature of the model.
First, it makes mean field annealing (section 2.1.5) possible, since the shift goes
hand in hand with a smoothing effect on the energy landscape of E(V') and gradu-
ally disappearsif T is lowered. Second, by keeping the final temperature small but
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Figure 3.3: The term (:%S(Vi) for various values of .

positive, solutions are dragged away from corners of the hypercube [0, 1]* caus-
ing the corresponding U-values of the neurons to be finite. We further notice that
minima of E(V) situated in the interior of the hypercube are also displaced by the
effect of noise. The magnitude of the displacement strongly depends on the pa-
rameter value .

In the literature, we occasionally encountered a slight confusion concerning
the Hopfield term E;, (V). As we have seen, the term directly relates to the U;-
terms in the corresponding updating rules (2.30): U; = 0Ey, /9V;. Takefuji consid-
ers the ‘decay term’ U; *harmful’ and concludes (quote from pp. 6 and 7 in [82]):

“Hopfield gives the motion equation of the i-th neuron (Hopfield and Tank
1985):

Ui Ui OE

dt 7'_8Vi

(3.32)

(... ). Wilson and Pawley strongly criticized the Hopfield and Tank neural
network through the Travelling Salesman Problem. Wilson and Pawley did
not know what causes the problem. The use of the decay term (—U;/7) in
Eqg. 3.32 increases the computational energy function E under some conditions
instead of decreasing it.”

So Takefuji suggests, but does not prove that the problems which Wilson and
Pawley [88] encountered, are caused by the decay term U; /7 (in our formulations
7 = 1). We think this suggestion is not correct for two reasons. First, in his analy-
sis, Takefuji does not add the Hopfield term E;, (V') to the energy function, but at
the same time, he does take up the decay term U; in equation (3.32). He then con-
cludes, that the decay term is responsible for incrementing the cost function E(V)
under some conditions, making it thereby harmful. In fact, this conclusion on the
increase of the cost function is correct, but it should not be considered harmful:
we shall prove in the next section that the encountered energy increase precisely
corresponds to the aforesaid displacement of solutions.
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Second, analyzing the TSP, Wilson and Pawley applied the penalty method with
many competing (sometimes called mutually “frustrating’) penalty terms: this
soft approach should be considered the crucial factor for the poor results in their
approach.

3.2.3 Why the decay term is not harmful

We already know from theorem 2.2, that under some general conditions, equation
(3.32) continuously decreases E.(V) = E(V) + E, (V) until an equilibrium point
is reached. Takefuji argues in the following way that the cost function E(1") alone
may increase: using equation (3.32) with 7 = 1, it is seen that

OF -

E = a5 Vi = .i i .i
iBViV > (&U; sU)V;

(3

@Z(Uf + UiUi)

(3

Vi
u;’

(3.33)

Because dV;/dU; > 0, a necessary condition for an increase of E(V") can be stated
as follows: there should be at least one i such, that

U2 +UU; <0, (3.34)
which is equivalent to
aeU; <U; <0 or 0<U; < €U (3.35)

These two conditions correspond precisely to a displacement of a solution toward
the interior of the state space. We shall prove that the first condition results in a
displaced minimum with a lower value of V; (the second corresponds to a displace-
ment with a higher value). The left inequality of <U; < U; < 0 implies that

&U; eU; < 0. (3.36)
Using again (3.32) with 7 = 1, one finds:

OF
Vi

so that E as function of V; is decreasing.
The right-hand inequality of <U; < U; < 0 implies that <U; > 0. Using once
again (3.32) and the equation U; = 0Ey/0V;, one finds:
OE OE, OE .
v, + av. ~ av; +U;, =«U; >0, (3.38)
so that the sum of E and E} is increasing. The inequalities (3.37) and (3.38) to-
gether imply

=alU; &U; <0, (3.37)

OEy
Vi

>0, (3.39)
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Figure 3.4: E, Ey, and E + Ej, as function of V.

so that Ej, as a function of V; is increasing. Therefore, V; > 0.5. We have put this
altogether in figure 3.4 (for the case that E has a minimum for V; = 1). It should be
clear now that the conditions (3.37) to (3.39) imply a displacement of the minimum
of E(V) to the interior, caused by the contribution of E;, (V).

It is easy to prove that the converse also holds: a displacement of a solution
to a smaller value of V;, caused by the Hopfield term, implies <U; < U; < 0.
Summarizing, we conclude that the conditions (3.35) which may cause an increase
of the cost function E(V), precisely correspond to a displacement of a solution to
the interior of the state space. Since we argued in the previous subsection that
such a displacement is a pretty feature of the model, the decay term is not at all a
harmful one.

3.3 Generalizing the model

3.3.1 Afirst generalization step

In this subsection, we introduce a more general view on Hopfield neural networks
which puts the analysis of section 3.1 in a wider context.

Theorem 3.4. If (w;;) is a symmetric matrix, then a mean field approximation of the free
energy of stochastic binary Hopfield networks can also be stated as

Fus(U,V) = &5y wyViVi &Y LVi+ Y UVi e+ In(1 +exp(BU5)), (3.40)

i,j i
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where the stationary points of F; 3 are found at points of the state space for which

1

Vi:V; = T o 0:

ANU; = ZwijVj + I;. (341)
J

Proof. Substitution of lemma 5 in the energy function F;» of theorem 3.2 immedi-

ately yields the free energy expression (3.40). Resolving the system of equations

Vi : OF,3/0U; = 0,0F,3/0V; = 0 (compare 3.14) yields the equations (3.41) as so-

lutions. O

The most interesting point of theorem 3.4 is the fact that the stationary points of
F,3 coincide with the complete set of equilibrium conditions (2.34), provided that
the sigmoid is the chosen transfer function. In fact, this clarifies (what may be
clear intuitively) that, for a full description of the (continuous) Hopfield network,
one should know both all input values (U;) and all output values (V;). Thus, it is
actually better to call the set of vectors {U, V'} the system state of the neural net
(instead of merely the vector V).

Just like Fy;, is a Lyapunov function, so F; 3 appears to be a Lyapunov function
of the motion equations (2.30):

Theorem 3.5. If (w;;) is a symmetric matrix and if Vi : V; = 1/(1 + exp(<8U;)) is the
transfer function, then the energy F,3 is a Lyapunov functlon for the motion equations
(2.30).

Proof. Knowing that the sigmoid function is a monotone increasing and differen-
tiable function and that w;; is a symmetric matrix, it follows that

E13 — aFuS V Z 6E13 (342)
= ; @Z wii Vi &I + U;) Vi + Z ﬁ)m (3.43)
= SYUNi=e X0 i< (3.44)

In section 3.2.2, it is shown that the solution values of U; are finite for finite values
of 5. Then, F3 is bounded below. Therefore, execution of the motion equations
(2.30) constantly decreases the value of F},; until Vi : U; = 0 and a (local) minimum
has been reached. O

Inspection of the proof immediately yields a well-known [44], complementary set
of motion equations for which F;3 or <F,3 might be a Lyapunov function:

Theorem 3.6. If the matrix (w;;) is symmetric and positive definite, then F,3 or alter-
natively, if the matrix (w;;) is symmetric and negative definite, then <F3 is a Lyapunov
function for the motion equations

1

A
1+ AU

<V, (3.45)
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where

U= wi;Vi + ;. (3.46)
j
Proof. The proof again considers the time derivative of F,3. If (w;;) is positive
definite, then

(:ZVU @sz V @ZVZUJ”V<0

(3.47)

If (w;;) is negative definite, then &F,5 < 0. In both cases, updating conform (3.45)
decreases the corresponding Lyapunov function until, finally, Vi : V; = 0. O

3.3.2 A more general framework

Since equations (3.41) are a special case of (2.34) and similarly, equation (3.16) is a
special case of (2.32), the question arises whether theorem 3.4 can be generalized
to an energy expression of a continuous Hopfield network having neurons with
an arbitrary® transfer function of the form V; = g(U;). The following two theorems
answer this, and other questions, affirmatively.

Theorem 3.7. If (w;;) isasymmetric matrix, then any stationary point of the energy Fy¢
defined by

Fye(U,V) = szgVV @ZIV+ZUV @Z/ wydu  (3.48)

coincides with an equilibrium state of the continuous Hopfield neural network.

Proof. Resolving
Vi: OFg/OU; =0 A OFg/0V; =0, (3.49)
the set of equilibrium conditions (2.34) is immediately found. O

In fact, the energy expression (3.48) can simply be derived from Hopfield’s origi-
nal expression (2.32) using partial integration. Having V; = ¢g(U;), we can write

) AVRCERS  (CERES )
— ZUV @Z/ w)du + ¢, (3.50)

6In fact, V; = ¢(U;) is not completely arbitrary, since, for mathematical reasons, one should im-
pose one or more general restrictions. E.g., g(U;) may have to be continuous, differentiable and-or
integrable. To keep things simple, we mention these restrictions explicitly so far as they are of special
interest. In other cases, the precise conditions are omitted and supposed to hold implicitly.
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where ¢ = &), fgo,l(o) g(u)du is an unimportant constant which may be ne-
glected’. Substitution of the result in (2.32) yields (3.48).

Theorem 3.8. If (w;;) is a symmetric matrix and if Vi : V; = g(U;) is a differentiable
and monotone increasing function, then the energy function Fg¢ is a Lyapunov function
for the motion equations

J

Proof. The proof is a direct generalization of the proof of theorem 3.5. O

Theorem 3.9. If the matrix (w;;) is symmetric and positive definite, then Fi or alter-
natively, if the matrix (w;; ) is symmetric and negative definite, then <F;; is a Lyapunov
function for the motion equations

Vi = g(U;) &V;, where U; = Zwiﬂ/} + I;. (3.52)
J

Proof. The proof is a direct generalization of the proof of theorem 3.6. O

It is interesting to see that the conditions for which the updating rules (3.51) and
(3.52) guarantee stability are so different. In the first case, stability only depends
on the transfer function chosen. The corresponding condition that V; = ¢(U;)
should be differentiable and monotone increasing is generally easy to check. In
the second case, stability depends on the structure of the optimization problem
involved. The corresponding condition that the matrix (w;;) should be positive
or negative definite, may be difficult to check. The motion equations (3.51) are
therefore in practice the preferable choice.

3.4 Computational results

We already discussed the fact that, in principle, the unconstrained continuous
Hopfield model can be used to solve combinatorial optimization problems. The
approach required is the soft one applying penalty terms. However, the compu-
tational results as known from literature are often very poor (section 2.4). On the
other hand, we noticed in footnote 11 of the previous chapter that the penalty
method may be useful for solving purely combinatorial problems. For this rea-
son, we first confine ourselves to report certain experimental results involving one
of such problems, namely the n-rook problem?. By doing this, we can simulta-
neously check some of the theoretical statements of this chapter, especially con-
cerning the role of the temperature parameter. Secondly, we shall dwell upon the
outcomes of a simple problem which is resolved using mean field annealing.

"1t is not difficult to see that g(0) = 0 = ¢ = 0.
8In addition, this problem acts as an introduction to the TSP, the experimental outcomes of which
— together with those of other problems — will be reported in the next chapters.
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3.4.1 The n-rook problem

The n-rook problem (NRP), which is strongly related to the famous n-queen prob-
lem, can be stated as follows: given an n x n chess-board the goal is to place n
non-attacking rooks on the board. The problem is the same as the ‘crossbar switch
scheduling’ problem, where the throughput of packets should be controlled in
such a way that at any time, no two inputs may be connected to the same output
and, vice versa, ho output may be connected to more than one input simultane-
ously®. We may map the problem on the continuous Hopfield network as follows:
if Vi; represents whether a rook is placed on the square of the chess-board with
row number ¢ and column number j, we search for a combination of Vj;-values
such that the following constraints are fulfilled:

Cio= > D VyVa=0, (353)
,j k>j
Co = D> ViyVi; =0, (3.54)
Jyi k>i
Cs = 30 _Vijen)?’ =0 (3.55)
1Y)

C1 = 0 implies that in any row at most one Vi, # 0, C> = 0 implies that in any
column at most one V;; # 0. C5 = 0 in combination with C; = C, = 0 implies
that precisely n rooks are placed on the board. The constraints fulfill the condi-
tion (2.37). C1, Cs, C3 can thus be used as penalty terms. The cost function to be
minimized becomes

3
Fume(V) =Y caCa(V) + En (V). (3.56)
a=1

The corresponding motion equation of this problem is
. aF nr
Uij = ®—an = &0 ; Vik &co ; Vij cn:g(izj Vij &n) &Uij, (3.57)

where Vj; = 1/(1 + exp(<8U;;)). We note that in this problem the matrix (w;; x1)
is symmetric so that (3.57) is expected to be stable. In the numerical simulation,
we apply the approximation

Using random initializations of V;; around 0.5, and choosing Va : ¢, = 1, con-
vergence is always present, provided At is chosen to be small enough. In case of
n = 4, At = 0.01 is a good choice. At low temperatures, most of the neurons ap-
proach zero, while four of them become approximately one. In fact, one of the
24 possible solutions is ever found. The four neuron values which have become
approximately one, are all equal and depend on g:

9As we shall see later on, the problem is also strongly related to the TSP. It has been resolved by
Takefuji [82] too, although he applied another neural network. See further also [65].
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g Vij=1
1000 | 0.998392
200 | 0.993678
20 | 0.960207

Table 3.1: Solution values V;; = 1 as function of 3, in case n = 4.

At high temperatures however, all 16 V;;’s become equal. E.g., for 3 = 0.0002
keeping the other parameters the same, we found Vi, j : V;; = 0.499650. The effect
of a high noise level is present now.

In case of n = 25, 8 = 1000, At = 0.0001, we again found convergence, namely
to one of the 25!, i.e. to one of the approximately 1.55 x 10%® solutions. In case of
n = 50 and other parameters as before, we found convergence to one of the ap-
proximately 3.04 x 10%* solutions. ‘Even’ taking n. = 100 with At = 0.00005 , the
system turns out to be stable. However, the calculation time now becomes an is-
sue (several hours), since the neural network involved consists of 10 000 neurons,
which have to be sequentially updated in the simulation for several thousand of
times.

3.4.2 Mean field annealing

We finish this chapter by showing how the addition of noise can help to find the
global minimum of a function. We look for the minimum of the Hamiltonian

Eut(V) = &V2 + 1.5V, (3.59)

where V; € [0,1]. The global boundary minimum of E.¢ is the point (0,0), while
(1,0.5) is the other (local) boundary minimum. Direct application of gradient de-
scenton E,,¢ (V) with random initialization of V; on the interval (0.0,1.0) yields the
global minimum in 75% of the cases, namely, if 1} € (0.0,0.75). However, in 25%
of the cases, namely, if V; € (0.75,1.0), the local boundary minimum is found.

If we apply mean field annealing by adding a sufficient amount of noise in the
beginning, the global solution is always found. Figure (3.5) demonstrates how this
can happen: at high temperatures (low values of 3), the minimum of the free en-

ergy
Fint(V) = Eme(V) + En(V) (3.60)

occurs slightly left of Vi = 0.5. On lowering the temperature, this minimum is
gradually displaced and finally appears in the state V; = 0, while at the same time,
the free energy Fi,r more and more approximates the original E¢. Even if the
initial value of V7 is in the interval (0.75,1.0), the right solution will still be found.
A simulation using the corresponding motion equation

i F,
0, = ﬁ% — 2 sl5 e, (3.61)
1
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0 0.5 1

Figure 3.5: Fi,¢ for various values of j.

(where as usual, V; = 1/(1 + exp(<pUy))), confirms this conjecture: e.g., having
8 = 0.5and V = 0.977 initially, the network immediately relaxes to the equilib-
rium point at that temperature: we found (0.418,-0.907). On lowering the temper-
ature step by step, the network continually relaxes to the new equilibrium point,
which is gradually displaced towards the final limit point (0.0,0.0).

As has been pointed out in chapter 1, matters are usually much more compli-
cated when real practical problems are tackled. E.g., problem instances of prac-
tical interest generally have energy functions in a high-dimensional space with
many local minima widely scattered around, which gradually appear after each
other on lowering the temperature. Thus, in those cases, the precise effect of the
temperature is not quite clear and it is strongly connected to the actual structure
of the energy surface of the problem.



Chapter 4

Constrained Hopfield
networks

We take up the strong approach of dealing with the constraints as mentioned in
section 2.4: the constraints are built-in in the neural network. Surprisingly, the se-
lected constrained binary stochastic Hopfield neural network can be analyzed in
a similar way as the unconstrained network of the previous chapter®. It leads to
the insight that this constrained model also coincides, in mean field approxima-
tion, with an (adapted) continuous Hopfield net. Having elucidated this, we gen-
eralize the encountered free energy expressions: in three steps, the most general
framework of continuous Hopfield models will emerge. As usual, we conclude
by reporting some experimental results.

This chapter is largely structured like the previous one. Parts of this chapter
have been published earlier in [9, 15, 17] or will be published soon [11]. A consid-
erable part has been recorded in the technical reports [13, 16].

4.1 Once again, the mean field approximation

We restrict the space of allowed states of the neural net by imposing the constraint
(2.40), that is, we impose

D Siel=0. (4.1)

Thus, only such states are admitted where exactly one of the neurons is on, all the
others being off. The original state space {0, 1}" is reduced to a much smaller one
having the admissible n states (1,0,0, ... ,0),(0,1,0,...,0),...,(0,0,0,...,1). In
order to analyze this constrained neural network, we again adopt the modified
version of Simic’s approach [77].

LIn fact, the research efforts which induced the (more difficult) analysis given here, for the greater
part preceded those concerning the unconstrained networks.
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Theorem 4.1. If (w;;) is a symmetric matrix, then a mean field approximation of the free
energy of stochastic binary Hopfield networks submitted to the constraint (4.1) can be
stated as

Fa(V) = %ZwijViVj &3ln [Zexp(ﬂ(z wi; Vi + 1)), (4.2)
i\J i J

where the stationary points of F, are found at points of the state space for which

exp(B(3_; wi; Vi + 1))

vili= Zl eXp(ﬁ(Z]’ wii Vi + 1y)) ‘

(4.3)

Proof. The proof follows the scheme of the proof of theorem 3.1. This time, we
shall indicate the partition function by Z,.. Up to and including the exact equation
(3.5), the proof is precisely the same. Thereupon, summation over the n states of
the constrained space using lemma 6 yields,

_ [exp [®§ Zi’j ¢iw;jl¢j +1In )", exp(B(d; + ]z))] I1, d¢

he —

Jexp [#8 5, o' 65 T, 4o (4.4)
Writing
Bne($,1) = 3> diwjj' ¢; <5 In Y exp(B(¢i + 1)), (4.5)
ij i

partial differentiation of Ej,.(¢, I) this time leads to the saddle point equation

- exp(B(d; + I

(;51' = Zwi]’ ( ((b = )) - (46)
7 >exp(B(g + 1))

Up till now, the calculations have been exact. The question arises, whether @)

and ¢ are again related conform a saddle point approximation. Applying a mod-

ified, but very similar version of lemma 4, we arrive at the following saddle point
approximation:

0Enc(9,1) _ exp(B(¢s + 1))
ol >orexp(B( + 1))
If we now substitute the approximation (4.7) in the exact formula (3.5), we indeed

obtain (3.11), which states that in a saddle point approximation (¢) ~ ¢. We fur-
ther realize that again equation (3.12) holds and that it leads to (4.2) conform

Vin e (4.7)

Fhe = % In Zne & Ene($,T) ~ Ene((3), I) = Fer (V), (4.8)
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where the last equality is obtained by substitution of (3.5). Using the symmetry of
w;;, we finally find the equations (4.3) via

OF, Bexp(B(3; wi; Vi + Ik))wr

BV1 - Z“’” <5 Z -
: > exp( (Ej wiiVi + 1))

_ ' eXp( (> wi; Vi + Ii))
= ;Uhk(vk bzl (B, wy V5 + 1)

) =0. (4.9)

These equations are the mean field equations of the constrained neural network
[69, 70, 78]. Apparently, the first order saddle point approximation and the mean
field analysis again yield the same results. This completes the proof. O

We may realize in another way that the first order saddle point and the mean field
approximation are approaches of the same kind. By combining (4.7), (3.11), and
(3.5), the saddle point approximation results into the mean field equations by re-
alizing that

exp(B(d; + 1))
Zz exp(ﬂ((j;l + 1))

exp(B((¢:) + 1))  exp(B(C; wiV; + 1))
Sy exp(BUd) + 1)) 2y exp(BCC; wi Vi + 1)

Vi

(4.10)

The sign flip (in the quadratic expression of the S;’s) we mentioned in the previous
chapter is present again. Likewise, it can be undone producing a new free energy
expression. This is stated more precisely in the following theorem, where the con-
strained subspace C is defined as the subspace of the state space [0, 1]™ for which

2iVi=1
Theorem 4.2. If (w;;) is a symmetric matrix, then a mean field approximation of the free

energy of stochastic binary Hopfield networks submitted to the constraint (4.1) can also
be stated as

= Zw”VV@ZIV+ ZVlnm, (4.11)

where the stationary points of F¢,, considered as a function over the constrained
space C, coincide with the (global) stationary points of F;.

Proof. Taking U; = Z]. w;;V; + I;, lemma 7 states:

In ) exp(B0)_wi;V; + 1) =
i j
&Y VilnV; + B0 wi;ViVi + Y LVy). (4.12)
7 ij 7
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By combining this result and equation (4.2), the expression (4.11) for Fex(V) is
found. In order to find the constrained stationary points of F.,, a Lagrange mul-
tiplier term is added to (4.11) giving

Lea(V,)) = wavv @ZIV+ ZVan+/\ZV(:)1 (4.13)

The stationary points of L., are found by resolving the following set of equations
(4.14) and (4.15):

OL¢>
v, = <:)>E UJZJV; <:>Ii+ (1-|-an)+/\—0 i=1,...,n, (414)
aLcQ
- el =0 4.1
) Ez Viel=0 (4.15)

From (4.14) it follows that
Vi exp(X; wi,Vy + L)

b 4.16
Vi exp(z wii Vi + I;) (4.16)
Combining this result with (4.15), we obtain
e w; Vi + 1
1= Z Vi = v 2k P sV 4 T) (4.17)

exp(z wij Vi + I;)

This equation implies the mean field equations (4.3). The solutions of these equa-
tions are stationary points of L., and constrained stationary points of F;, as well.
This completes the proof. O

It should be clear that a replacement of w;; by <w;; and of I; by <1; slightly mod-
ifies the above given theorems yielding mean field equations of the type

’ exp(&s (E wii Vi + 1;))
P exp(ef (2w Vi + 1))

(4.18)

4.2 Properties

4.2.1 The relation between F,; and F,

As in the unconstrained case, we have found two approximations of the free en-
ergy, namely F¢; and F.,. We again want to understand how they are related. We
start with an example. Suppose the function to be minimized is

H;3(S) = 1(Sf +253) subjectto S; + S, =1, (4.19)

then the corresponding free energy expressions (from theorems 4.1 and 4.2) equal
Fams(Vi,V2) = &5(V7 +2V7) &4 Infexp(&8V7) + exp(26V3)], (4.20)
Feo,mz(Vi, Vo) = (V2 +2V) + 5(Viln Vi + Vo InV3). (4.21)
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Figure 4.1: The free energy Fe1,p3. Figure 4.2: The free energy Fe2, mr3.

A diagram of these functions is shown in the figures 4.1 and 4.2, with g = 20,
which corresponds to a low noise level. The arrow denotes the point (3,1, 1)
which is the global maximum of F¢; g3, respectively the constrained minimum of
Fe» 3, if noise is neglected. In this example, the constrained subspace C consists
of the subspace of [0, 1]* for which V; + V> = 1. In figure 4.3, F.1 g3 and Feo g3
are shown over this constrained subspace. We notice the same phenomenon like
in section 3.2 concerning the Hamiltonian E;: F; g3 and Fee g3 have coinciding
stationary points with an opposite character of the extrema.

Likewise, analyzing the Hamiltonian
Hy(S) = ©L(S7 +253) subjectto Si+ S =1, (4.22)

we found that F¢1, g4 and Feo, g4 have extrema of the same kind. This is not further
elaborated here.

Concluding this subsection, we observe that, within the constrained space C,
F; and F¢, seem to behave in the same way as F,,; and F,» in the unconstrained
case.

4.2.2 The effect of noise

The resemblance of the constrained Hopfield network to the unconstrained one
reaches even further. The free energy Fc» can be interpreted as a function over a
probability distribution V', where in this case

Vi=(S)=P(Si=1AVYj#i:S;=0). (4.23)

A closer investigation reveals that s, like Fs, is structured conform the gen-
eral free expression (2.9). However, contrary to what we concluded in the un-
constrained case, the neurons now have a mutually dependent contribution (of
%Vi In V;) to the entropy term. At high temperatures, the thermal noise energy
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Figure 4.3: The energy expressions F; g3 and Feo g3
in the constrained space C.

dominates, this time yielding the constrained equilibrium solution Vi : V; = 1/n.
This is easily recognized by resolving (using Lagrange’s multiplier method)

minimize % >, VilnVg,

subject to: >, Vi &1 =0. (4.24)

Lowering the temperature corresponds to a decrease of thermal noise in the sys-
tem and the details of the original cost function become visible. Therefore, mean
field annealing can be applied.

4.3 Generalizing the model

4.3.1 Afirst generalization step

In this subsection, we introduce a general view on the binary constrained Hopfield
model which puts the analysis of section 4.1 in a wider context. It will also enable
us to analyze the stability properties of the constrained model.

Comparing the unconstrained and the constrained binary stochastic Hopfield
model, the question may be posed whether the free energy approximation F.; co-
incides with the energy of the continuous Hopfield model with the transfer func-
tion

o exp(BUy)
Vi=all)= > exp(BUr)

This transfer function is (of course) induced by the mean field equations (4.3). The
corresponding continuous Hopfield network is visualized in figure 4.4. It is im-
portant to notice that the expression (4.11) for F¢, is not a special case of the gen-
eral energy expression E. (2.32) of the original continuous Hopfield model. This

(4.25)
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Figure 4.4: The constrained Hopfield network with equilibrium condition:
Vi:U; = Zj wi]-Vj +IL;and V; = exp(Ui)/El eXp(Ul).

follows from the observation that

Vi
Z /0 g; t(v)dw (4.26)

is not properly defined here, since V; = ¢;(U) is now a function of Uy, Us, ... ,U,
and not of U; alone. Apparently, we have introduced a new, adapted continuous
Hopfield network. The relation between this network and its stochastic counter-
part is given by the following theorem.

Theorem 4.3. If (w;;) is a symmetric matrix, then a mean field approximation of the free
energy of stochastic binary Hopfield networks submitted to the constraint (4.1) can also
be stated as

Fes(U,V) = 1Y wiViV; &) LVi+ > ViUi &3> exp(8U3)), (4.27)
ij i i i

where the stationary points of F3 are found at points of the state space for which

. exp(BUy)
vievi= > exp(BU;)

Proof. Substitution of lemma 7 (in its original form) in the energy function F» of
theorem 4.2 immediately yields expression F¢3. Resolving the system of equations
Vi: 0F.3/0U; = 0,0F.3/0V; = 0 yields the equations (4.28) as solutions. |

AU =Y wiVi+ 1T (4.28)
J

Again, we encounter the interesting phenomenon that the stationary points of
a free energy approximation of a stochastic model coincide with the conditions
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of equilibrium of a continuous Hopfield network. From the analysis presented
above it also follows that, in the constrained case, Hopfield’s theorem 2.2 does not
hold. This induces the question whether, and if so, under which conditions, the
adapted continuous Hopfield model converges. The following theorem answers
this question.

Theorem 4.4. If (w;;) is a symmetric matrix, if (4.25) is used as the transfer function,
and if, during updating, the Jacobian matrix J, = (9V;/0Uj) first is or becomes and
then remains positive definite, then the energy F¢s is a Lyapunov function for the motion
equations (2.30).

Proof. Assuming that the conditions of the theorem hold we may say that in the
long run

FCS — aFcSV ZaFCS
_ o BV
= Z @ZMUV &L+ U)Vi + Z 5 exp(,@Ul))Ul
= @ZU Z U sUT U <o. (4.29)

Since F,3 is bounded below at finite temperatures (for similar reasons as explained
in the unconstrained case), its value decreases constantly until Vi : U; = 0 and a
local minimum is reached. O

Whether the general condition holds that the matrix .J; will become and remain
positive definite, is not easy to say. Applying lemma 8, the symmetric matrix J;
is given by

V1(1 <:>‘/1) <:>‘/1V2 <:>‘/1Vn
A% V(lely) - SV,
B : . _ . (4.30)

So we see that all diagonal elements of .J, are positive, while all non-diagonal ele-
ments are negative. Knowing that ). V; = 1, we argue that for large n in general

Vi, Vi, Vk : ViV << Vi(1 &V4), (4.31)

although this statement is certainly not always true. Nevertheless, it is not unrea-
sonable to expect that in many cases, the matrix J; is dominated by the (positive)
diagonal elements, making it positive definite?. For these reasons, it is conjectured
that the motion equations (2.30) turn out to be stable in many practical applica-
tions.

2Under the given conditions, the symmetric matrix .J has only positive eigenvalues, implying the
definite positiveness of it [66].
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As in the unconstrained case, inspection of the proof of the previous theorem im-
mediately yields a complementary set of motion equations for which F.3 may be
a Lyapunov function:

Theorem 4.5. If the matrix (w;;) is symmetric and positive definite, then F;3 or alter-
natively, if the matrix (w;;) is symmetric and negative definite, then <F¢5 is a Lyapunov
function for the motion equations

. exp(8U;)
Vi= =——7= oV, 4.32
> exp(3U) +32)
where
Ui =Y wi;Vi + 1. (4.33)
J
Proof. The proof is the same as the proof of theorem 3.6. O

4.3.2 A very general framework

It is remarkable, that the motion equations (2.30) of the continuous unconstrained
model may still be applied using the constrained model, where the concrete trans-
fer function (4.25) is a function of all inputs U;. This poses the question whether
those motion equations can still be applied if an arbitrary® function of the form
Vi = g:(U) = ¢;(U1,Us,...,Up,) is used. This would yield a further generaliza-
tion of (2.32), of section 3.3.2, and of the previous section. The following theorems
answer this question.

Theorem 4.6. Let G(U) = G(Uy,Us, ... ,U,) be afunction for which

. 0G(U)

Vi: == = aiU) (4.34)

If (w;;) is a symmetric matrix, then any stationary point of the energy
Fue(U,V) = &1 Y wViVy &> LV + ) UiV ©G(U) (4.35)

i\ i i
coincides with an equilibrium state of the continuous Hopfield neural network defined by*
Vi:Vi=gi(U) A U; =Y wi;Vi + T (4.36)
i
Proof. Resolving

Vi: OF gt /0U; =0 A OF,g¢/0V; =0, (4.37)
the set of equilibrium conditions (4.36) is found. O

3Again, certain general restrictions should be imposed on the transfer function: see footnote 6 of
the previous chapter.
4Note, that the set of equilibrium conditions (4.36) is indeed a generalization of the set (2.34).
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Theorem 4.7. If the matrix (w;;) is symmetric and if, during updating, the Jacobian ma-
trix Jg first is or becomes and then remains positive definite, then the energy function £, q¢
is a Lyapunov function for the motion equations

Ui =Y wi;Vj + I; &U;, where V; = g;(U). (4.38)
J

Proof. The proof is a direct generalization of the proof of theorem 4.4. O

Theorem 4.8. If the matrix (w;;) is symmetric and positive definite, then F, ¢ or alter-
natively, if the matrix (w;;) is symmetric and negative definite, then <F, 4 is a Lyapunov
function for the motion equations

Vi = gi(U) &V;, where Uy = Y w;;Vj + I (4.39)
J

Proof. The proof is a direct generalization of the proof of theorem 4.5. O

The conditions for which the updating rules (4.36) and (4.39) guarantee stability
are quite different. Compared to the general framework of the unconstrained net-
work (section 3.3.2), the condition on the transfer function (theorems 3.8 and 4.7)
has become more difficult to check. On the other hand, the condition on the ma-
trix (w;;) (theorems 3.9 and 4.8) has remained the same and, often unfortunately
hard to check.

4.3.3 The most general framework

We now ask ourselves whether the expression U; = Zj w;;V; + I; can also be gen-
eralized, namely, to an arbitrary ‘summation function’ of type U; = h;(V') (where
an external input I; is still admitted), and whether we can still give conditions that
guarantee stability. Since we have done all the preparatory work, the affirmative
answers to these questions are surprisingly simple. The result is what we have
termed the ‘most general framework of continuous Hopfield models’.

Theorem 4.9. Let G(U) be function defined like in theorem 4.6 and let in the same way
H(V)=H(,V,,...,V,) beafunction for which

. OH(V)
T, T . 4.4
Vi =g = hilV) (4.40)
Then any stationary point of the energy
Foge(U,V) = H(V) + > _ UiV <G(U) (4.41)

coincides with an equilibrium state of the continuous Hopfield neural network defined by

Vi:Vi=giU) A Ui = hiy(V) (4.42)
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Proof. Resolving
Vi : OF g /OU; =0 A OFnge/0V; =0, (4.43)

the set of equilibrium conditions (4.42) is found. O

-

I
| b1
|
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Figure 4.5: The most general continuous Hopfield network with equilibrium
condition: Vi : U; = hy(V) and V; = ¢;(U).

Vi

Theorem 4.10. Suppose that Fi,.¢ (U, V') is bounded below. Then the following state-
ments hold:

(a) If, during updating, the Jacobian matrix J; = (0V;/0Uj;) first is or becomes and then
remains positive definite, then the energy function Fi,¢ is a Lyapunov function for the
motion equations

U; = hi(V) ©U;, where V; = g;(U). (4.44)

(b) If, during updating, the Jacobian matrix .J,, = (0U;/0V;) firstis or becomes and then
remains positive definite, then the energy function Fi,,¢ is a Lyapunov function for the
motion equations

Vi = g:(U) &V;, where U; = h; (V). (4.45)
(c) If, during updating, the Jacobian matrices .J, and J,, first are or become and then re-
main positive definite, then the energy function Fr,,¢ is a Lyapunov function for the mo-
tion equations

Ui =h(V) Ui A V;=g,(U) Vi (4.46)
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Proof. Assuming that the conditions as mentioned in (c) hold, we obtain

aFmgf aFmgf

Frgt = Vi + Z U;
oV; - oU;
= Z(@h-(m *U 2 50, CODIF Y
= U Z
= (:)UTJgU @VTJhV <0. (4.47)

Then, the boundedness of F,4 is sufficient to guarantee stability where at equi-
librium Vi : U; = V; = 0 implying the general equilibrium condition

Using (4.47), the proofs of (a) and (b) can be done in the same way as the proof of
theorem 4.4. O

Contemplating the results of this section, several striking observations emerge:

e By choosing appropriate transfer functions g;(U), several different types of
constraints C, (V') can be incorporated in continuous Hopfield networks.
If they are chosen in such a way that the Jacobian matrix J, first is or be-
comes and then remains positive definite, stability of the differential equa-
tions (4.44) is generally guaranteed. Alternatively, stability can be forced by
choosing appropriate summation functions »; (V") while at the same time ap-
plying motion equations (4.45).

¢ By choosing appropriate summation functions h; (1), ‘arbitrary’ energy ex-
pressions H (V') (not merely quadratic ones!) can be modelled by general-
ized continuous Hopfield networks. If they are chosen in such a way that
the Jacobian matrix .J;, first is or becomes and then remains positive definite,
stability of the differential equations (4.45) is generally guaranteed. Alter-
natively, stability can be forced by choosing appropriate transfer functions
9:(U) while at the same time applying motion equations (4.44).

e Taking the purely mathematical point of view, it is clear that the transfer
functions g¢;(U) and the summation functions h;(V') are completely inter-
changeable.

An important consequence of these observations is the fact that within the intro-
duced generalization, much more freedom exists for configuring continuous Hop-
field neural networks. On the one hand, modelling an energy expression H(V) is
rather simple, since the corresponding summation functions (which should im-
plement the desired energy expression H (V")) can be found by simply taking the
corresponding partial derivatives h;(V) = 0H(V)/0V;. It is interesting to note
that, very recently, we came across two examples of this approach. In [24], ‘higher
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order neural networks’ are introduced and appear to represent a much stronger
heuristic to solving the Ising spin (checkerboard pattern) problem than that which
isimplemented by the Hopfield network. In [80], again higher order couplings be-
tween the neurons are admitted, just as well, to solve a combinatorial optimization
problem (namely, a certain scheduling problem in behalf of ‘cellular robotic sys-
tems’). It is argued that this approach avoids the spurious states [44] which are
usual in neural networks without higher couplings.

On the other hand, building-in constraints may be more difficult: the transfer
functions g; should be chosen in such a way that the output values always fulfill
the constraints, that is, for any set of input values U;. The type of the built-in con-
straints effects the way the state space is walked through. E.g., having

i V=1, (4.49)

the constrained space consists of an (n-1)-dimensional flat hyperplane, while
choosing

ﬁ Vi =1, (4.50)

this space is composed of an (n-1)-dimensional curved surface. But whatever the
choice of the constraints may be, stability should be investigated whether in an
analytical or in an experimental way. As we shall see in the next section on the
results of certain simulations, the choice of right transfer functions even turns out
quite complicated. The difficulties encountered there, are strongly related to the
following question: which conditions should the built-in constraints fulfill in order to
guarantee that the continuous Hopfield network can be considered a mean field approxima-
tion of a corresponding stochastic network (submitted to the same set of constraints)?

We conclude this theoretical section by observing that the original continuous
Hopfield model, as introduced in section 2.3.2, beautifully fits into the most gen-
eral framework presented here: having monotone increasing, differentiable trans-
fer functions V; = g(U;), the Jacobian matrix J, is positive definite since all its di-
agonal elements are positive while all its non-diagonal elements equal zero. Us-
ing the motion equations (4.44) with ; (V') = 3_, w;;V;+I;, stability is guaranteed
conform theorem 4.10.

4.4 Computational results

The object of presenting the computational results of some experiments here, is
not to give an exhaustive list of all possible ways the given theory of this chapter
can be applied. Instead, the more modest objective is to show that the derived gen-
eral theories are not falsified by the elementary tests we performed, and that, at
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the same time, these tests yielded certain encouraging, informative, and startling
results which invite to do more practical research in times to come®.

44.1 Afirst toy problem

Let us start with a very simple experiment concerning constrained optimization:
minimize V2 4 2Vy + 3Vi +4V2 subjectto: Vi + Vo + V3 +Vy =1. (4.51)

We apply the motion equations (2.30) with transfer function (4.25), which implies
that the constraints are enforced in the strong sense. As has been mentioned in
section 4.3.1, stability can be hoped for, but can not be guaranteed. Taking ran-
dom initializations, we found the correct solution in all cases. Choosing 5 = 20
(low temperature), the solution V; = 0.471, Vo, = 0.244, V3 = 0.163, V4 = 0.1221s
obtained. This corresponds precisely to the location of the constrained minimum.
On the other hand, taking 8 = 0.0001, the equilibrium solution = 0.250, V> =
0.250, V3 = 0.250, V, = 0.250 is found, showing the expected effect of a high ther-
mal noise level.

4.4.2 A second toy problem

A second simple problem concerns a test whether non-quadratic cost functions can
be tackled using the most general framework of continuous Hopfield networks
having certain built-in constraints (section 4.3.3). We consider the following prob-
lem:

minimize V7V + V5 subject to: Vi + Vo = 1. (4.52)

The corresponding motion equations are

U, = 2V el (4.53)
Uy, = 3V2VE sV al,, (4.54)
where

exp(BU1) + exp(BUz)°

Applying random initializations, we always found a monotone decreasing func-
tion Fi,,¢(V) and the correct solutions. Taking 8 = 0.001, the encountered so-
lution values are V; = 0.5001 and V> = 0.4999. Choosing 8 = 50, V1 = 0.617
and V5> = 0.383 are found, which approach the exact solution values (without any
noise) in the interval [0, 1], being V1 = 0.625 and V> = 0.375.

5Actually, some of the experimental results presented here, have been obtained quite recently. They
were induced by the most general framework, whose final formulation dates from only a couple of
months ago. There is still much work to do in order to understand all capabilities of this framework.
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4.4.3 An informative third toy problem

This third toy problem is set up in order to test whether cost functions submitted
to asymmetric linear constraints can be resolved successfully. We consider the fol-
lowing problem:

minimize 2V} +V;? subjectto: V; + 2V, = 1. (4.56)
The corresponding motion equations are

Ul = AV @Ul, (457)
U, = 2V, els. (4.58)

Now the problem is how to define the transfer functions. In fact, there are several
possibilities, e.g.,

_ exp(BU1) 0d Vo = exp(BU2)/2
Vi= exp(BUL) + exp(BUs) d Vs = (A0 + oxp(305) (4.59)
or
_ exp(8U1) nd Vo = exp(BUs)
" exp(BUL) + 2exp(SU2) and Vo = exp(BUy) + 2exp(BU,) (4.60)

Applying random initializations, we always found convergence. However, the
solutions found did not approximate the exact solution V; =1/9and V5 = 4/9.

Inspection of equations (4.59) and (4.60) reveals that in both cases, 1} € [0,1]
and V5 € [0,0.5]. Thus, we have lost the usual property that

Vi:V; €[0,1]. (4.61)

This observation inspired us to look for a modification of the original problem
such that it can be mapped onto a network having constraints that yet fulfill con-
dition (4.61). Eventually, we tested the following formulation of the problem:

minimize 2V + 1V + 1V? subjectto: Vi + Vo + V3 =1,V =V3.  (4.62)

The corresponding motion equations are

U, = <4V, oU, (4.63)
Uy = &V als, (4.64)
Us = &V eUs, (4.65)

where the transfer function of all neurons equals

V= exp(BU;)
b Y exp(BUN)°

Having V, = V3 (after a correct initialization), equation (4.65) exactly coincides
with (4.64). It therefore suffices in practice to merely apply motion equations (4.63)

(4.66)



68

Constrained Hopfield networks

and (4.64), where V; and V; are defined conform (4.60). The difference between
this model and the previous one, comes from the difference between equations
(4.58) and (4.64).

Applying random initializations, we always found convergence and this time,
also the correct solution! Taking 8 = 50.0, the solution V{ = 0.117, V, = 0.441
is found, which approximates the afore-mentioned exact solution of the original
problem. Taking 8 = 0.0001, the expected solution values at high temperature are
encountered, namely V7 = 0.333 and 1, = 0.333.

An important conclusion

The last example shows that the general framework can not be used groundless.
The results also set us conjecture that a property like (4.61), expressing that all neu-
rons should belong to the same interval, may be essential. Furthermore, it should
be clear that the approach of this section to tackle asymmetric linear constraints
can easily be generalized, that is, constraints of the type

ZajVj =c, ajc€R, (4.67)
J

can normally be grappled with in the way shown. This is not further elaborated
here.

4.4.4 A startling fourth toy problem

Still another experiment has been performed in order to test whether an alterna-
tive type of constraints can be built-in successfully. Moreover, it is tried to solve
the problem using two different sets of motion equations. We consider the follow-
ing problem:

minimize 2V} + V5 subjectto: Vi % Vp = 1. (4.68)
It is easy to check that the exact solutions of this problem are 1 = v/0.5 ~ 0.841

and V5 = v/2 ~ 1.189. Using the differential equations (4.44), the concrete motion
equations are

U = <4V, oU, (4.69)
Uy = <2V, oUs, (4.70)
where we take

P (B + )

The last equation (which has been found after some tries and guesses) indeed im-
plies that V1 « V5, = 1. Alternatively, using the type of differential equations (4.45),
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the concrete motion equations are

Vi = exp(5h) Vi, 4.72
LT et ) 472
V = xpB2) Ly, (4.73)

where Uy = €4V; and Uy = <215,

Applying random initializations and At = 0.001, we found proper conver-
gence for all values of 8 € [<0.19,20], while for values outside this interval the
motion equations were (nearly always) divergent. Both models behaved the same,
and some solutions are given in table 4.1. Actually, these solution values do not

B 1 Vs
-0.1 | 1.1555 | 0.8654
0.1 | 0.9258 | 1.0802
0.5 | 0.8160 | 1.2254
1.0 | 0.7740 | 1.2919
2.0 | 0.7449 | 1.3425
10.0 | 0.7155 | 1.3976
20.0 | 0.7114 | 1.4057

Table 4.1: Solutions values of ] and V5 as function of 3

falsify the theoretical conjectures of section 4.3.3. However, again we meet the
phenomenon that we did not solve our original optimization problem. Likewise,
the values of ;7 and V5 do not fulfill condition (4.61). The effect of the controlling
parameter 8 has been changed too: neither solution values are dragged towards
the center of the solution space for low values of 8 (high temperatures), nor the
solutions found approximate the solution of the original problem at low temper-
atures. Apparently, the free energy Fi,..r does not approximate the original cost
function for low values of 3! ©

A second important conclusion

The aforesaid computational outcomes show that one should be very careful in
interpreting the results of the most general framework in case of building-in new
types of constraints. The quite fundamental issue at stake is that the usual sta-
tistical mechanical interpretation of the continuous Hopfield model (where 1/8
corresponds to a pseudo-temperature) does not hold for every set of built-in con-
straints. This issue raises the question as mentioned in the end of section 4.3.3,
which, alternatively, can be stated as: which conditions relating to the built-in con-
straints can guarantee that the free energy F..r (as defined in (4.41)), can be writ-

6perhaps, this observation does not come as a surprise. The complete statistical mechanical inter-
pretation has shut down: because of definition (4.71), V; can impossibly be associated with a proba-
bility.
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ten in the standard form (2.8) as known from statistical mechanics? This question
still begs for an answer.

445 The n-rook problem revisited

We here return to the constrained model that was analyzed extensively at the be-
ginning of this chapter. Since part of the constraints of the NRP can be built-in
in the neural network, whereby at the same time the space of admissible states
is considerably limited, this partially strong approach is expected to work better
than the purely soft approach applied in section 3.4. Here, the Vj; are chosen in
such a way that

Vi) Vi =1, (4.74)
J
implying that in every row, the sum of occupied squares of the chess-board equals
one. It now suffices to minimize the cost function
Fc,nr(V) = C1C’2(Vv) + Eh(V), (475)

since C, enforces that in any column j at most one 13, ; # 0. The corresponding
motion equation is simply

‘ OF s o exp (08U )
Uy = &—22 = &¢ Vii ©U;;, where Vj; = ——— 192 | 4.76
1= Sry T M el = ey 70

We notice that the matrix (w;; ;) is still a symmetric one. A little analysis may
clarify how the state space is limited. For that purpose, we consider the binary
model with neurons S;; (remember that V;; = (S;;)). In the soft approach, all n*
neurons may independently have value 0 or 1, so then there are 2" different
neural net states. In the strong approach, every row has n states, so in that case,
there are n™ different states. The following table shows both quantities as function
of n:

n 21’L Xn nn

1 2 1
2 16 4
3 524 27
4 | 65536 256
P opxp | 9plogy p

Table 4.2: 2%™ and n™ as function of n.

So for large values of n, the number of admissible states differ substantially.

The experimental outcomes confirm the conjecture that the constrained network
behaves much better. Using the numerical approximation (3.58), again with ran-
dom initializations and taking At = 0.01, convergence is always present provided
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the penalty weight is set large enough. At low temperatures, the effect of noise is
small as can be seen from table 4.3, where the neural outputs that are close to 1 are
shown. If the temperature is increased slightly more, a rapid phase transition oc-
curs: for 5 = 0.3, the solution values become almost equal conform V;; =~ 0.2500.

B | Vij=1
10 | 1.0000
1 0.9999
0.5 | 0.9767

Table 4.3: Solution values V;; = 1 as function of 3, in case n = 4.

The larger n is the chosen, the larger the penalty weight ¢, should be taken
in order to arrive at equilibrium. This contributes to speed up the convergence
process. The convergence time is invariably only a small fraction of the conver-
gence time of the pure penalty method. E.g., taking ¢; = 50, only a few minutes
are needed in order to find a solution for the 150-rook problem while many hours
would be needed if the soft approach was applied!

It is interesting to note that the values of the neurons initially seem to change
in a chaotic way: the value of the F; ,,, strongly oscillates in an unclear way. How-
ever, after a certain period, the network suddenly finds its way to a stable mini-
mum, at the same time rapidly minimizing the value of the cost function.
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Chapter 5

The Hopfield-Lagrange model

As mentioned in section 2.4, a third way of coping with constraints is the use of La-
grange multipliers. In order to better understand the behavior of the correspond-
ing Hopfield-Lagrange model (introduced in section 2.5), we here start by ana-
lyzing its stability properties by means of a new Lyapunov function. Next, we
prove that, under certain conditions, the model degenerates into a so-called dy-
namic penalty method and we dwell on the effect of so-termed hard constraints. We
thereafter scrutinize the stability of the ‘constrained Hopfield-Lagrange model’,
which is a combination of the constrained Hopfield model of the previous chap-
ter with the multiplier approach of this chapter. In this case, an ‘arbitrary’ (see,
again, footnote 6 of chapter 3) cost function is admitted as well as ‘arbitrary’ trans-
fer functions can be chosen.

We finish by presenting the computational results of various experiments both
with unconstrained and constrained Hopfield-Lagrange networks. Parts of this
chapter have been published earlier in [12, 14], much has also been recorded in
technical report [13].

5.1 Stability analysis, the unconstrained model

5.1.1 Some reconnoitrings

For convenience, we again state the equations of the Hopfield-Lagrange model,
which is based on the use of Lagrange multipliers in combination with the original
unconstrained continuous Hopfield model. The energy of this modetl is given by

Eu(V,d) = E(V)+Y AaCa(V)+En(V) (5.1)

SN wiViVi @) LVi+ > AalCa(V)+ En(V)  (52)
i\j i o

LAlthough we have shown in theorem 3.3 that Ey, (V) is a thermal noise term, Ey,;(V, ) does not
turn out to be a properly bounded free energy (see below). This is why we do not replace E;, by Fy,;.
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having the corresponding set of differential equations

. OE, 0C,

U; = <:>8—VZ = E]- wiiVi + I; & Ea A“a—w Ui, (5.3)
. O0Bm

da=+5 = CaV), 54

where V; = ¢g(U;). Let us first take a simple toy problem in order to try to under-
stand why the gradient ascent or sign flip as referred to in section 2.4 is needed in
(5.4). The problem is stated as follows:

minimize E(V) = V{,
subject to: Vi 1 =0. (5.5)

Using the Hopfield-Lagrange model with the sigmoid as the transfer function,
the energy function (5.2) equals

1
BV, ) =V2+ M (V1) + B((l V) In(1 V) + Vi in V). (5.6)

At low temperatures, this energy expression simply reduces to an expression of
the form (2.43)

pr,t(va /\) = VY12 + >‘1 (‘/1 <:>1)7 (57)

which is visualized in figure 5.1. To find the critical point (11, A1) = (1, <2) using a

critical point

pr,t

Figure 5.1: The energy landscape of V;2 + A\, (V; <1).

direct gradient method, we should apply a gradient descent with respect to 1; and,
at the same time, a gradient ascent with respect to A, : the result is a spiral motion
towards the critical point. We shall see that the gradient ascent is also needed if
the Hopfield-Lagrange network is applied.
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Let us pose the question under which circumstances the set of differential equa-
tions (5.3) and (5.4) converge. A natural approach is to try the energy (5.2) as Lya-
punov function. Taking the time derivative, we obtain

Ehl(V,A) = Z(@Z’wz]‘/] @Ii-FZ)\a% +Ui)‘./i+2>.\a0a
J « ¢ a

i

w2 dVi 2
@Zi: U * za: c2. (5.8)
This reveals that if the constraints are (and remain) fulfilled, stability is guaran-
teed by using a transfer function whose derivative is always positive. However, if
the constraints are not fulfilled, £}, is not necessarily monotone decreasing. Thus,
we realize that stability is not guaranteed if we apply a random initialization of the
neural network. On the other hand, if we would apply a gradient descent in equa-
tion (5.4), then Ey(V,\) < 0. Nevertheless, this does not work since E,(V, \) is
generally not bounded below (see also figure 5.1). The corresponding differential
equations may be unstable and in practice, they appear to be so.

Therefore, we adhere to the original set of differential equations (5.3), (5.4) and
adopt the approach of Platt and Barr from section 2.5 as our guiding principle for
analyzing them.

5.1.2 A potential Lyapunov function

In the afore-stated approach, physics is the source of inspiration. We want to set
up an expression of the sum of kinetic and potential energy. For that purpose, the
differential equations (5.3) and (5.4) are taken together, yielding one second-order
differential equation:

N dv; . 0C,
U, =& E aijd—U,jjU]’ sSU; & E Caa—‘/i, (59)
J [

where (a;;) equals (2.48), that is,

82C,
aij = €wij + Y Aa o (5.10)

Equation (5.9) coincides with the equation for a damped harmonic motion of a
mass system, where the mass equals 1, the spring constant equals 0, and where
the external force of the system equals <) C,0C,/dV;.
Theorem 5.1. If the matrix (b;;) defined by
dv;
bij = aijd—Ujj + dij (5.11)

(045 being the Kronecker delta) first is or becomes and then remains positive definite, then
the energy function

U.
: P00,
Biintpot = »_3UZ + ) / Ca—or-du (5.12)
i ia V0 v
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is a Lyapunov function? for the set of motion equations (5.3) and (5.4).

Proof. Taking the time derivative of Exin ot and using (5.9) as well as the positive
definiteness of (b;;), we obtain

. - oC,
Ekin+pot = ; UiUi + % Coz WUZ

ZU @Za” U U, @ZC aa?/ +Z C’a%%f]i

1,0
@Z U; a” U @Z U?

i.j
Provided Exinpot IS bounded below (which is expected to hold in view of its def-
inition), its value constantly decreases until finally Vi : U; = 0. From (5.3) we see

that this normally implies that Vo : A\, = 0 too. We then conclude from equations
(5.3) and (5.4) that a stationary point of the Langrangian function E,(V, A) must
have been reached under those circumstances. Or, in other words, a constrained
equilibrium point of the neural network is attained. O

Inspection of the derivation reveals why the gradient ascent is helpful in (5.4):
only when the sign flip is applied do the two terms}_, U; Yo Ca0C,/0V; cancel
each other. In order to prove stability, we should analyze the complicated matrix
(bi;) which in full equals

920, \ av;
bi]’ = (dwij + ; Ao 8V26VJ> d—UJ + 5” (5.14)

Application of the Hopfield-Lagrange model to combinatorial optimization prob-
lems yields non-positive values for w;;, so then w;j = &w;; > 0. If we confine
ourselves to expressions C, which are linear functions in V, then equation (5.14)
reduces to

bij = w;jj—‘U/—jJ_ + ;. (5.15)
If the §;;-terms dominate, then (b;;) is positive definite and stability is sure. How-
ever, it seems impossible to formulate general conditions which guarantee stabil-
ity, since the matrix elements b;; are a function of dV; /dU; and thus change dy-
namically during the update of the differential equations. This observation ex-
plains why we called this subsection ‘A potential Lyapunov function’.

2Since Exin+pot isthe sum of kinetic and potential energy of the damped mass system, this function
is a generalization of the Lyapunov function introduced by Platt and Barr [71]. They used equation
(2.47) which has a simple quadratic potential energy term. Here, this term cannot be used because of
the non-linear relatlonshlp V; = ¢(U;). The quadratic term has to be modified in the integral as shown,

while V; is replaced by U;.
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In practical applications, we can try to analyze matrix (b;;). If this does not turn
out successful, we may rely on experimental results. However, there is a way of
escape, namely, by applying quadratic constraints. Under certain general condi-
tions, they appear to guarantee stability in the long run at the cost of a degenera-
tion of the Hopfield-Lagrange model to a type of penalty model.

5.2 Degeneration to a dynamic penalty model

5.2.1 Non-unique multipliers

We consider the Hopfield-Lagrange model as defined in the beginning of section
5.1.1.

Theorem 5.2. Let W be the subspace of [0,1]” suchthat V € W = Va : Co (V) =0
and let VO € W. If the condition

0C,

Va,Vi: Cyp =0= av;

=0 (5.16)

holds, then there do not exist unique numbers A, ... ;A% such that Ey,(V, \) has a crit-
ical pointin (V°,\%).

Proof. The condition (5.16) implies that all m x m submatrices of the Jacobian (A.3)
are singular. Conform the ‘Lagrange Multiplier Theorem’ of appendix A, unique-
ness of the numbers ), ... | \% is not guaranteed. Moreover, in the critical point
of Ey, the following equations hold:

oC
0 a 0 _
ij wi; VP + I @za: Aaa—w(v ) &U; = 0. (5.17)
Since Vo : 0C,/0V;(V?) = 0, the multipliers A, may have arbitrary values in a
critical point of Ey(V, \). O

In the literature (e.g. in [85, 44, 82, 86, 88]) and in section 5.5 and 5.6 of this
thesis, quadratic constraints are frequently encountered, often having the form

Co(V) = %(Z Vi, ©n,)> =0, a=1--m, (5.18)

where any n, equals some constant. Commonly, the constraints relate to only a
subset of all V. So, for a constraint C,,, the index i, passes through some subset
N, of {1,2,... ,n}. We conclude that

Ca _ [ X Vi ©na ific N,
av; | 0 otherwise.

(5.19)

It follows that condition (5.16) holds for the quadratic constraints (5.18). This im-
plies that multipliers associated with those constraints are not uniquely deter-
mined in equilibrium points of the corresponding Hopfield-Lagrange model.
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5.2.2 Stability yet

The question may arise how the Hopfield-Lagrange model deals with the non-
determinacy of the multipliers®. To answer that question, we again consider (5.2),
(5.3) and (5.4) and substitute the quadratic constraints (5.18). This yields

Eng(V,\) = +Z ZVH &nq)? + En(V), (5.20)
U, = & > Xl Z o) U, (5.21)

€Sy
Ao = %Z . ena)’. (5.22)

Theorem 5.3. If Vi : V; = g(U;) is a differentiable and monotone increasing function,
then the set of differential equations (5.21) and (5.22) is stable.

Proof. We start by making the following crucial observations:

1. As long as a constraint is not fulfilled, it follows from (5.22) that the
corresponding multiplier increases:

Ao > 0. (5.23)

2. If, at a certain moment, all constraint are fulfilled, then the set of mo-
tion equations (5.21) and (5.22) reduces to
. OF
Ui = &— U, 5.24
oV; (524)
Since we are dealing with the unconstrained Hopfield model, this sys-
tem is stable provided the transfer function is differentiable and mono-
tone increasing (chapter 3). This implies that instability of the system
can only be caused by violation of one or more of the quadratic con-
straints.

We now consider the total energy Ej,  of (5.20). Suppose that the system is ini-
tially unstable (if it would be stable, the set of differential equations would con-
verge rapidly). One or more constraints must then be violated and the values of
the corresponding multipliers will increase. If the instability endures, the multi-
pliers will eventually become positive. It follows from (5.20) that the contribution

Z Z ong)? (5.25)

to Ey,q then consists of only convex quadratic forms, which correspond to vari-
ous parabolic ‘pits’ or ‘troughs’ # in the energy landscape of F, . As long as the

3This must be in a certain positive way, since the aforementioned experiments from the literature
were at least partially successful.

4If i, passes through the whole set {1,2,... ,n}, i, Via — nq )2 represents a n-dimensional
parabolic pit. If, instead, i, passes through a proper subset of {1, 2, ... ,n}, this quadratic expression
represents a trough in the energy landscape of £y, . However, in both cases, we shall speak of pits.
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multipliers grow, the pits become steeper and steeper. Eventually, the quadratic
terms will dominate and the system settles down in one of the created energy pits
(whose location, we realize, is more or less influenced by E and E;,). In this way,
the system will ultimately fulfill all constraints and will have become stable. O

Actually, for positive values of A,, the multiplier terms (5.25) fulfill the penalty
term condition (2.37) and therefore act as penalty terms. Furthermore we notice
that in case of applying a continuous neural network (where Vi : V; € [0, 1]), the
minima of (5.25) might be boundary extrema.

As was sketched in the proof, the system itself always finds a feasible solution.
This contrasts strongly with the traditional penalty approach, where the experi-
menter may need a lot of trials to determine appropriate penalty weights. More-
over, as sketched, the penalty terms might be ‘as small as possible’, having the
additional advantage that the original cost function can be minimally distorted.
Since the penalty weights change dynamically on their journey to equilibrium, we
have met with what we shall term a dynamic penalty method.

5.2.3 A more general view on the degeneration

In the previous two subsections, we analyzed the degeneration of the Hopfield-
Lagrange model under the specific condition (5.16) concerning the constraints.
Here, a more general analysis of this deterioration to a dynamic penalty method
is sketched, where the proof whether the multipliers are unique or not, does
notbother us.

We consider the unconstrained Hopfield-Lagrange model as it was re-stated at
the beginning of section 5.1.1. We already observed in that section that instability
must be caused by the violation of one or more of the constraints provided the
correct transfer function has been selected. We realize that if

1. Va,VV:C,(V) >0, and

2. increasing multiplier values correspond to a changing energy land-
scape with ever deeper pits whose minima represent valid solutions,

then the set of differential equations (5.3), (5.4) will generally be stable. The evi-
dence for this phenomenon is based on the crucial observations (5.23) and (5.24),
and is further discussed below.

It is interesting to note that the origin of ever deeper pits in the energy land-
scape resembles the phenomenon of a phase transition in a certain sense. If, in the
unconstrained Hopfield model the temperature is increased, one steep pit is cre-
ated by the entropy term (3.30). Above the critical temperature, the entropy term
dominates and the corresponding solution equals Vi : V; ~ 0.5. In case of the
degenerated Hopfield-Lagrange model, the pits originate by increasing multipli-
ers (which behave like penalty weights). Above a certain set of critical values, the
multiplier terms dominate and the various minima correspond to approximately
feasible solutions.
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In addition, mean field annealing can be applied. In that case, two transforma-
tions of the energy landscape occur simultaneously, one being caused by increas-
ing multipliers, the other by a lowering of the temperature. We must take the ad-
ventitious consequence of a tuning problem concerning the absolute and relative
speed of the two transformations.

5.3 Hard constraints

Let us return to our toy problem (5.5) and see how it works in practice. Using the
Hopfield-Lagrange model, the differential equations corresponding to (5.6) are

Uy = <2V +\N)eU, (5.26)
Moo= Vel (5.27)

where V; = ¢g(U;) = 1/(1 + exp(«<8U;)). We note that V; is now bounded to the
interval [0, 1]. We can easily prove stability, since in this case

. -, dV; -

Fhingpott = €2U2—L &U? <0. (5.28)

’ dU,
Consequently, Exin4pot IS monotone decreasing until U; = 0 and thus, normally,
until Ay = 0, which in turn implies Vi = 1and U; = . Inspection of (5.26)
now reveals that in equilibrium, A; must equal <oo. So the critical point of Ei, ¢
is (V1,A1) = (1,<00) and we have run up against an unexpected difficulty. We
have lost the pretty feature of the continuous Hopfield model of finding solutions
corresponding to finite values of U;. The reason is obvious: the *hard’ constraint
V1 <1 restricts the solution space to 17 = 1 with corresponding U; -value equal
1o oo.
There exists a simple solution for this problem ‘in the spirit’ of the continuous

Hopfield model. If we relax the hard constraint (5.27) to

Vi &l =, (5.29)

the new energy expression becomes
. 1
Buy=V2+M(Viel+te + E[(l Vi) In(leVi) + Vi InVy], (5.30)

having its critical pointin (Vi,\) = (1 ¢, <2 + A)y), where

€
1 &e

1
A)\l 26 + ﬂ ln(
We see that the critical point is situated in the neighborhood of the original value if
the error AX; (which is determined by e and ) is small. Like in the original Hop-
field model, it can be kept small if we choose large values of 5. To determine the
sensitivity of the parameters, we performed some calculations. We may conclude
from the computational results as given in table 5.1 that sufficiently high values

). (5.31)
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e =0.001 e =0.01 e=0.1
B AN B AN B AN
5000 | +0.0006 | 5000 | +0.019 | 5000 | +0.199
500 | «0.01 500 | +0.010 500 | +0.196
50 | «0.136 50 | «0.07 50 | +0.156
5| «<1.38 51 <0.90 51 «0.239
1] <6.9 1| <4.58 1| <1.997

Table 5.1: The error A)\; as a function of e and g.

of 8 indeed guarantee a small error A);. In figure 5.2, some critical points have
been put together. The position (1, <2) of the constrained minimum of E, ¢ is
shown, together with some positions of the extrema of E,; + for various values of
B and e = 0.01. Clearly, the critical point (Vi, A1) = (1,<00) of En ¢ is absent in
the figure.

0 \
Vi=l—-€
-1+ _
positions of position
A -2 - critical points —==x of y
of By \\ min Epp%
N
-3 _
A4 \
0.97 0.98 0.99 1
Vi

Figure 5.2: Positions of some critical points of E
and of the minimum of Ey, .

We note that the described difficulty of an infinite multiplier value only occurs if
one constraint on its own, or several constraints together, are hard, by which we
mean that the constraints extort that 3i : V; = 0 or V; = 1. In practice, one often
encounters constraints like

Y Viel=o. (5.32)

If such a constraint stands alone or is independent of the other ones, the Hop-
field term E,, generally drags the corresponding minima to the interior of the state
space in the usual way as we have described in section 3.2.2.
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5.4 Stability analysis, the constrained model

One could wonder whether a stability analysis is possible in case of combining
the most general framework of chapter 4 — having ‘arbitrary’ cost functions and
‘arbitrary’ transfer functions — with the multiplier approach of this chapter. If
so, this model can be used to build-in part of the constraints directly, while other
ones are tackled using Lagrangian multipliers. In this subsection, the constraints
C, (V) = 0 are assumed only to belong to the last category!

Let us take equation (4.41) of the most general framework as the starting point
and then add multiplier terms to this expression. This yields the Lagrangian func-
tion

L(U,V,\) = +Z>\C +ZUV4:>G( ). (5.33)
We want to determine the stationary points of L(U,V, \) since these points cor-

respond to the solutions of the constrained optimization problem relating to this
matter. It can be done by resolving the differential equations

. 0L OH 0C,

U, = <:>8_V; = V. < E /\aa—‘/i U, (534)
. oL

Ao = +—a/\ Ca( ) (5.35)

where, just like in equation (4.44), we keep permanently V; = g;(U). We note that
Vi : V; = g;(U) implies that Vi : 0L/0U; = 0. Now, the following theorem can be
proven which is a drastic generalization of theorem 5.1.

Theorem 5.4. If the matrix (d;;) defined by
Vi
dl] = ; Cika—(]j + (Sij, (536)
Cik being

37
avavk ;A avavk (537

first is or becomes and then remains positive definite, then the energy function (5.12) is a
Lyapunov function for the motion equations (5.34) and (5.35), where Vi : V; = ¢;(U).

Proof. In this case,

i = @Zcm > ov;

(5.38)
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Taking the time derivative of (5.12), we obtain

Eintpot = Z} UU; + zZ.; Ca%Uz

= U (@chJZaU’Ukc}U 2050) ZC
= @ZUZ%BVI“U ZUZ

@Z U;d;;U; < 0. (5.39)

i,j

The rest of the proof is analogous to the proof of theorem 5.1. In the end, we have
Vi:U; =0,YVa : A\, = 0,and V; = g¢;(U), together implying that all partial
derivatives of L(U, V, ) are zero. In other words, a constrained equilibrium point
of the neural network has then been reached. O

The matrix (d;;) is given in full by

0’H 02C, '\ OV
dij Zk ( ViV, £ A amavk> oU; % (5.40)

This matrix is even more complicated than matrix (;;), which was briefly ana-
lyzed in section 5.1.1. We must conclude that it will often be impossible to give an
analytical proof of stability, implying that, in those cases, we should either rely on
experimental results, or apply quadratic constraints.

We finish this theoretical part by observing that it seems also possible to select
other updating rules for finding an equilibrium state of the general constrained
Hopfield-Lagrange network (see theorem 4.10). However, these approaches have
not been elaborated.

5.5 Computational results, the unconstrained model

55.1 Simple optimization problems

We started by performing some simple experiments by trying various quadratic
cost functions with linear constraints. The general form equals

n

minimize E(V) =1 di(V; ©e;)’,
i=1

subject to: afV; b =0, a=1,..,m, (5.41)

where d; is always chosen positive. The cost function is always such that its min-
imum belongs to the state space [0, 1] and the constraints are non-contradictory.
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Since for this class of problems
O’E 0?C,
oA = didij =
ov;0V; ov;oV;

the corresponding time derivative of the sum of kinetic and potential energy
equals

0, (5.42)

n

. av; .

Biintpots = <Y _(d; —de + 1)U <0. (5.43)
i=1 ¢

Using the sigmoid as the transfer function, we expect convergence for all problem
instances. All initializations of 1}, as well as of the multipliers, were chosen ran-
domly. We started trying the 'toy problem’ (5.5), which has been analyzed in sec-
tion 5.3. Using At = 0.0001 and 5 = 50, U was still growing (to o) and \ was still
shrinking (to -oc) after 107 iterations, which complies with the given theoretical
conjectures. Cutting off the calculations, we found the "final’ values V' = 0.999959
and \ = <2.404412. Thereupon, we relaxed the constraint to IV <1 = e. Resolving
the corresponding set of differential equations, choosing ¢ = 0.01, and leaving the
other parameters unchanged, we found asymptotic convergence to V' = 0.990000
and A = &2.163805: the first value is the correct one and the second one approxi-
mates the theoretical value <2.07 from table 5.1.

To investigate scalability, we extended the number of neurons and the number
of constraints in formula (5.41). In all cases, we encountered proper convergence.
E.g., taking

minimize V@ + (Vo ©1) + V5 + (Vi ©1)* + - + (Va0 ©1)?,
V1 + sz + ‘/10 = 95

s +
Vo + Vo + -+ + Vis = 5
subjectto: { Vin + Viz + + Ve =

ot

(5.44)

Vi + Vo + -+ + Vs = 5
after 10 iterations with At = 0.0001 and 8 = 50, we found
Vi:ie{1,3,5,---,49}:V; = 0.056360
Vi:i€ {2,4,6,---,50}:V; = 0.943640,
so, the constraints are exactly fulfilled. We also observe the expected effect of the
Hopfield term. The values of the 9 multipliers A, all equal 0.000000, correspond-

ing precisely to the theoretical ones, as can be easily verified. We repeated the ex-
periment, now choosing g = 100. We found

Viiie{1,3,5---,49}:V; = 0.033593
Vi:ii€{2,4,6,---,50}:V; = 0.966407.

The influence of the Hopfield term has diminished, which also corresponds to the
theoretical expectations.
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5.5.2 The weighted matching problem

To investigate whether the Hopfield-Lagrange model is able to solve combinato-
rial optimization problems in an adequate way, we performed some other exper-
iments. We first report the results of the computations concerning the WMP of
section 2.2.2. Interpreting V;; = 1 (V;; = 0) as if point ¢ is (not) linked to point j,
where 1 < i < j < n, we tried several formulations of the constraints. Using lin-
ear constraints, the corresponding system turned out to be unstable. Therefore,
we continued by trying quadratic ones since then, stability is generally guaran-
teed, as was pointed out in section 5.2.3. The corresponding formulation of the
problem is

n—1 n
minimize E(V) = Z Z di;Vij,
i=1 j=i+1
subject to:
i—1 n
Cri(V) = 30 Vit D Vi el?=0, (5.45)
Jj=1 j=i+1
Coii(V) = 3Vi(1eVy) =0. (5.46)

The constraints (5.46) describe the requirement that finally, every V;; must equal
either 0 or 1. We note that every C ;; corresponds to a concave function whose
minima are boundary extrema. The corresponding multipliers are denoted by »;;.
In combination with (5.46), the constraints (5.45) enforce that every point is linked

1 T \?\ %
\ \
[
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Lo |
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0.6 |- . ]
« 7 .
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' N
Ne
.//////4.
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0 | | | /
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Figure 5.3: A solution of the WMP for n = 32.
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to precisely one other point. The corresponding multipliers are );, and the com-
plete set of differential equations becomes

i—1 n
Ui]' = @di]’ @Az(z Vii + Z Vik @1) =
k=1 k=i+1

j—1 n
N Vi + S Vieel) sl eViy) eUy,  (547)
k=1

k=j+1
. i—1 n
A= 5Q Vit Y Vi el), (5.48)
j=1 j=it1
vij = 3Vii(leVi). (5.49)

Again, the sigmoid was the selected transfer function. The multipliers were ini-
tialized with the value 0. The experiments showed proper convergence. Using 32
points, the corresponding system consists of 1024 differential equations and 528
multipliers. After 40000 iterations using 8 = 500 and At = 0.001, the values of
A; lay in the interval [0.14; 0.83], while those of v;; were mostly of order 10~* and
sometimes of order 10~!. The values of V;; equalled 0.0000 or lay in the interval
[0.997;1.000], which is interpreted as equal to 1. The corresponding solution is vi-
sualized in figure 5.3. We have repeated the experiment and always found solu-
tions of similar quality, e.g., a solution where 13 (of the 16) links equal the links of
the solution shown.

In order to show how difficult the stability analysis can be when using theo-
rem 5.1, we determined the matrix (5.11) in case of n = 4. Enumerating rows and
columns in the order (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), we found:

Ais M@z NPy AaPaz AaPay 0
AMPia Az MNPy A3Pa 0 Az Pay
wm AMPia NPz A 0 MA@y Ay Psy
( ij,kl) =

MA@z A3®Pys 0 Aoz Aoy A3Psy

A2 P19 0 A®is APz Ay APy

0 As®i3 AaPia A3Paz AgPay Asg

where

dVi; dVi;

Aii=1 v+ A+ A AN D= .

(5.50)

In general, we can not prove convergence because the properties of the matrix o*™
change dynamically. However, stability in the initial and final states can easily be
demonstrated. Initially, we set all multipliers equal to 0. Then, "™ reduces to the
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unity matrix. On the other hand, if a feasible solution is found in the end, then
Vi,j @ Vi; = 0orV;; =~ 1implying that all ®;; ~ 0. This again implies that 6*™
reduces to the unity matrix. Since the unity matrix is positive definite, stability is
guaranteed both at the start and in the end. However, during the updating pro-
cess, the situation is much less clear. We have not further analyzed this theoreti-
cally.

5.,5.3 The NRP and the TSP

To see whether the Hopfield-Lagrange model is useful for solving more diffi-
cult combinatorial optimization problems, we have tried to solve the TSP (section
2.2.2). We shall see that the NRP (section 3.4.1 and 4.4.5), itself being a purely com-
binatorial problem, is a special case of the combinatorial optimization TSP. We first
consider a formulation of the TSP given by Hopfield and Tank [49]:

minimize Fi, (V) = Z Vijdir Vi1, (5.51)
ijok

subject to the constraints (3.53) to (3.55) of the NRP. Here, V;; means that city i is
visited in the j-th position, and d;; represents the distance between city i and city
Jj. Indices should be taken modulo r and it is supposed that d;; = d;;. Applying
the Hopfield-Lagrange model, we search for the extrema of

Ehl,u7tsp1(v >\ Etsp + Z >\ C + Eh( ) (552)

The corresponding set of differential equations equals

Uj = ®Zdzk Va1 + Vi1 ®>\12Vzk &
k k#j
A2 Z Vk]' ¢>>\3(Z V;'j <n @Uij, (553)
k#i %,]
Moo= DY ViV, (5.54)
i k>j
AT (5.55)
Gy k>i
. n
A= 30 v en) (5.56)

Comparing (5.52) to (3.56), we see that if Es, (V) = 0, the TSP reduces to the NRP.
Itis clear that the applied constraints are quadratic. If Va : A, > 0, condition (2.37)
holds for the multiplier terms, so in that case, they behave like penalty terms. We
also note that Vi : \; > 0 and we therefore expect convergence of the set of differ-
ential equations.
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The n-rook problem, again revisited

We already mentioned some computational results of the NRP using the soft ap-
proach (section 3.4.1) as well as the partially strong approach (section 4.4.5). Here,
we want to test the Hopfield-Lagrange model for the same problem. We should
apply the set of differential equations (5.53) to (5.56), where Vi, Vk : d;;, = 0.

Using random initializations of V;, we found convergence provided that At is
small enough. E.g., for n = 25, 8 = 500 and At = 0.0001 we found, after 2000 it-
erations, A\; = 0.655935, A = 0.649828, (a still growing multiplier) A3 = 0.690099,
and an almost feasible solution. The increase of A3 can easily be explained by the
theory of section 5.3 on hard constraints implying U;-values equal to +oco or <eo.
We further note that all multipliers have become positive.

The Travelling Salesman Problem

Using the Hopfield-Lagrange model, the TSP can be grappled by searching the ex-
trema of (5.52). In accordance with the observations as given in [86] (section 2.5),
we found proper convergence to nearly feasible solutions, provided At was cho-
sen small enough. Unfortunately, the quality of the solutions was very poor. Even
problem instances of 4 cities did not yield optimal solutions every time. Trying in-
stances with 32 cities yielded solutions like the bad one shown in figure 5.4.

Inspired by the success with the WMP, we tried to solve the TSP in a differ-
ent way namely by taking other quadratic constraints with one multiplier for every
single constraint. We expected to find better solutions, because in this approach
many more multipliers are used, which should make the system more ‘flexible’.
The modified problem is to find an optimal extremum of

i A
Eniugsp2(V,A) = z;g Vijdir Vi1 + Z 5(; Vi, ©1)% +
2,7, (3 9
. ‘ Vii
3 %(Z Vij 1)+ Y 2V (16Vy).  (657)
J k i,

The corresponding set of differential equations equals

Uij = @Z dir (ij+1 + ijfl) <:>/\’(Z Vik <:>1) =4
k k
i (O Vij &1) evi;(3 &Vy) Uy, (5.58)
k
A= D53 Vael), (5.59)
i k
o= Y5 Vig o1 (5.60)
j k
vij = Z 3Vij (1 eVy). (5.61)

i,j

Again, the experiments showed proper convergence. For very small problem in-
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Figure 5.4: A solution of the TSP1 for n = 32.
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Figure 5.5: A solution of the TSP2 for n = 32.
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stances we found optimal solutions. E.g., this time problem instances of 4 cities
always yielded optimal solutions. Large problem instances also yielded feasible,
but non-optimal solutions. An example is given in figure 5.5, where 32 cities were
used, At = 0.001 and the applied number of iterations was 100000. The encoun-
tered values of V;; were ei