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Abstract A parameter estimation method is proposed for fitting probability distribution functions to low flow observations. LL-moments are variants of L-moments that are analogous to LH-moments which were defined for the analysis of floods. LL-moments give higher weights to the small observations. Expressions are given that relate them to the probability distribution function. These are applied to normal, Weibull and power distributions, and their parameters are estimated using the LL-moments. Sampling properties of the LL-moments and of the distribution parameters and quantiles estimated by them are found by a Monte Carlo simulation study. It is shown on an example that the low flow quantile estimates obtained by LL-moments may be significantly different from those obtained by L-moments. 
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LL-moments pour estimation des quantiles d’écoulement bas 

Résumé On a proposé une méthode d’estimation des paramètres pour ajuster les fonctions de distribution probabilistique aux observations d’écoulement bas. Les 
LL-moments sont les variantes des L-moments et sont analogues aux LH-moments qui ont été définis pour l’analyse des inondations. Les expressions qui les associent aux fonctions de distribution probabilistique sont données. Celles-ci sont appliquées aux lois normal, Weibull et power, et leur paramètres sont estimés en utilisant des 
LH-moments. Propriétés d’échantillon des LL-moments et des paramètres de loi et des quantiles estimés par eux sont trouvées par une étude de simulation de Monte Carlo. On a montré sur un example que les estimations des quantiles d’écoulement bas obtenues par LL-moments peuvent être significativement différentes de celles obtenues par les L-moments.

Mots clefs  LL-moments; L-moments; écoulement bas; estimation de la queue basse.

INTRODUCTION 

The parameters of probability distribution functions can be estimated by various methods. The method of moments and the method of maximum likelihood have been widely used. Recently the method of L-moments has been introduced by Hosking (1990). The choice of the method to be used depends on the statistic to be estimated. It is desired that the method provides an unbiased estimate of the statistic under consideration with as small a variance as possible. However, it is not always possible to obtain an estimator that is both unbiased and efficient (with minimum variance).


L-moments have the advantage of providing parameter estimates that are nearly unbiased and highly efficient. They are not much influenced by outliers (extreme observations) in the data because they are linear combinations of the observed data values, unlike the ordinary statistical moments that need the data to be squared, cubed, etc. in their computations (Stedinger et al., 1993). Although they lead to quite efficient estimates of the parameters of a distribution, this may not be so for the estimates of extreme quantiles in some cases. Because very large or very small sample values are given little weight in the estimation, the sample information about the tails of the distribution may not be adequately evaluated (Klemeš, 2000), and consequently the quantiles at the tails may not be efficiently estimated when L-moments are used (van Gelder, 2000). Rosbjerg et al. (1992) found that extreme quantiles estimated by 
L-moments are less efficient than those estimated by the method of moments, for finite generalized Pareto distributed exceedences in a partial duration series context.


Wang (1997) introduced LH-moments, which are modified forms of the 
L-moments, to characterize the upper part of a distribution. He proposed to use LH‑moments for the estimation of flood quantiles because the trends shown by the large observations are then better captured.


In this paper LL-moments are defined. Whereas the largest elements of a sample are weighted more heavily when LH-moments are used, LL-moments give more weight to the smaller observations. Thus it is expected that parameters estimated using LL‑moments will provide a better fit to low flows than those estimated using L‑moments.


Expressions that define LL-moments are introduced. The first two LL-moments are expressed in terms of the probability distribution function of the random variable. Using these expressions, parameters of normal, Weibull and power distributions are related to the first two LL-moments. Equations are derived to estimate LL-moments from a sample. Lognormal and Weibull distributions are the most common two-parameter distributions used for low streamflows (see the reviews by McMahon & Diaz Arenas, 1982; Vogel & Kroll, 1989). Önöz & Bayazit (2001) found that the power distribution has a better fit to the minimum flows of some streams than the other two-parameter distributions. 


Finally, LL-moments of various orders are used to estimate the parameters of the lognormal, Weibull and power distributions fitted to the 36-year record of 7-day annual minimum flows of station no. 28009 the Trent River basin, UK. 

LL-MOMENTS IN LOWER TAIL ESTIMATION

The parameters of a probability distribution to be fitted to a sample of streamflows are generally estimated using the entire data. However, when the purpose is to estimate the low (high) flows, it may be reasonable to use tail estimation, placing an emphasis on fitting the lower (upper) tail of the distribution. 


Various methods have been proposed for tail fitting. Some authors have proposed that not all of the data, but only a certain percentage in the lower (upper) tail, are considered in parameter estimation. Nathan & McMahon (1990) used the lower 80% of the data in fitting the Weibull distribution to minimum flows. Durrans (1996) employed only those data values that are less than or equal to a ceiling value, which he chose at the probability level 0.25 (using conditional Weibull tail model).


In flood frequency analysis, Cunnane (1987) suggested that the analysis should be based on only those floods whose magnitudes exceed a certain threshold (censoring from below), considering that “smaller sample values have only a nuisance value in the context of upper quantile estimation and also in model form testing and verification.” Wang (1990) defined “partial probability weighted moments” and applied these to a censored sampled from below so that F varied from a lower bound F0 to one. He used these moments to estimate a distribution function for flood flows from censored samples, eliminating the undesirable effects of low outliers.


As an alternative, Wang (1997) proposed to use LH-moments instead of 
L-moments in parameter estimation for flood flow distributions. Data on the upper tail are given larger weight when LH-moments are used. LL-moments introduced in the present study give more weight to the smaller observations, and place an emphasis on fitting the lower tail of the selected probability distribution.

LL-MOMENTS

The L-moment of order r of a random variable X is defined as follows (Hosking, 1990):
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(1)
where Xr-k|r is the element of rank r – k in an ordered sample of size r (X1|r ( X2|r ( ….( Xr|r) drawn from the distribution of X. The first two L-moments are:
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where (1 is the mean, and (2 can be thought of as measuring the dispersion (scatter) of the distribution.


The relationship between the L-moments and the distribution function F(x) can be determined using the following expression (Hosking, 1990):
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From equations (2) and (3):
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L-moments can be estimated from an ordered sample of size n (x1 ( x2 ( … (xn) by the following equations (Wang 1996):
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Samples of size r are used in the definition of the L-moment of order r. Wang (1997) introduced the LH-moments where samples of size r + m (m = 1, 2, …) are used and the expectations are computed for the r largest elements of the sample:
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r = 1, 2, …
 (6)

where m = 0 corresponds to the L-moments. As m increases, LH-moments reflect more and more the characteristics of the upper part of the data. Wang (1997) found that the method of LH-moments resulted in large sampling variability for high m, and recommended not to use values of m higher than 4.


Similarly, LL-moments can be defined using samples of size r + m (m = 1, 2, …) and computing the expectations for the r smallest elements of the sample:
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Again, L-moments are a special case for m = 0. An increase of m increases the weight of the lower part of the data. 


The first two LL-moments are:


[image: image8.wmf][

]

[

]

m

m

m

L

m

m

L

X

X

E

X

E

+

+

+

-

=

l

=

l

2

|

1

2

|

2

2

1

|

1

1


(8)

Using (3), LL-moments can be expressed in terms of the distribution function F(x):
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(9)

Expressions to estimate the LL-moments from a sample of size n arranged in ascending order can be derived following the approach of Wang (1996). Consider equation (8) for 
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Similarly, for xi to be the second smallest of any combination of 2 + m values from the sample, m must come from the n – i larger values (
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 combinations) and one element must come from i – 1 smaller values. For xi to be the smallest of any combination of 2 + m values from the sample, 1 + m must come from the n – i larger values (
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NORMAL DISTRIBUTION
An approximation should be used for the inverse of the normal probability distribution function because an analytical expression is not available. A very good approximation is (Vogel & Kroll, 1989):
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Parameters ( and ( are related to the L-moments as (Stedinger et al., 1993):
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which can be compared with the results obtained by using equation (12):
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The difference between the two expressions for (2 is less than 1%.


Equation (12) is inserted into equation (9) to obtain the first two moments for m = 1 and m = 2:
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Parameters of the normal distribution can be estimated using 
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For m = 2, corresponding relationships are: 
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WEIBULL DISTRIBUTION

Inverse of the two-parameter Weibull probability distribution function is 
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Stedinger et al. (1993) give the following expressions for the L-moments:
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LL-moments can be computed using equation (9):
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For m = 0, equations (23) and (24) reduce to the expressions for (1 and (2, respectively, given by equation (22).


Solving for the parameters k and a:
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where 
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 is the LL-moment coefficient of variation:
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POWER DISTRIBUTION

The power distribution has the upper bound x0 and therefore it is a conditional distribution, F(x(X ( x0) (Önöz & Bayazit, 2001). Its inverse is given as: 
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Combining equation (27) with equation (9), the expressions for the first two 
LL-moments are obtained:
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where B(…,…) is the Beta function:
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Using equation (30), 
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Solving for the parameters c and x0, one obtains:
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SAMPLING PROPERTIES OF LL-MOMENTS

LL-moments are proposed to estimate the parameters of a probability distribution so that a better fit is provided to the observations at the lower tail. It would be useful to know how the sampling properties of the parameters are affected when LL-moments are used instead of L-moments in cases where the samples are taken from a given distribution. 


A Monte Carlo simulation study is carried out for the evaluation of the sampling properties of LL-moments and their comparison with those of L-moments. The study is performed for the three distributions considered herein. For the normal, Weibull and power distributions, the population parameters are assumed as (1 = 1.0 and (2 = 0.2 (CVL = 0.2). 


For the assumed values of L-moments, the parameters of the distributions are estimated using the relationships between the parameters and the L-moments, (1 and (2. For each distribution considered, 10 000 samples have been generated for each of the sample sizes n = 10, 25, 50 and 100. 


For each sample generated in the experiments, the sample estimates of (1, (2,  (1L1, (1L2, (2L1 and (2L2 and are obtained by equations (5), (10) and (11). Then, the parameters of the distributions (( and ( for the normal distribution, a and k for the Weibull distribution, and x0 and c for the power distribution) are estimated based on L-moments, LL-moments with m = 1 and LL-moments with m = 2, using the expressions given herein. As a statistic that is frequently used to characterize the low flows, the quantile x0.10 corresponding to the nonexceedence probability q = F(x) = 0.10, is computed using the x(F) relationship and the estimated parameter values for each sample.


Finally, the mean and the variance of the sample estimates of (1, (2,  (1L1, (1L2, (2L1, (2L2, ( and ( (or a and k, or x0 and c), and x0.10 are obtained for each distribution and sample size. The relative bias of a statistic is computed dividing the difference between its sample mean and its population value by its population value. Relative variance is computed dividing the variance of the sample estimates of a statistic by the square of its population value. The relative bias and variance of L-moments are invariant of CVL (Sankarasubramanian & Srinivasan, 1999). Simulation experiments in this study have shown that this is also true for the other statistics. The relative mean square error (MSE) is the sum of the squares of the relative bias and the relative variance. 

Sampling biases of statistics

The relative biases of all the statistics are found to be small. In general they vary with 1/n, although this is not so clearly seen in the results for the normal distribution where the biases are very small, much lower than those of the other two distributions. For the normal distribution, all the relative biases are less than 0.02 in absolute value; biases of the first-order L-moment and ( increase when they are estimated by LL-moments. This increase is 4–5 times for the first-order L-moment and 2–4 times for ( for m = 1 and m = 2, although the largest bias is still not greater than 0.005. The use of 
LL-moments instead of L-moments in the estimation of the parameter ( has no effect on its bias. Similarly, the biases of LL2-moments are not higher than those of (2.
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Fig. 1 Relative biases of the parameters k of the Weibull distribution and c of the power distribution as functions of the sample size n for m = 0, 1 and 2 (statistics not shown have much smaller biases).


For the Weibull and power distributions, the relative biases of most statistics are less than 0.06 in absolute value. The parameter k of the Weibull distribution has the largest bias (0.157) when it is estimated from the samples of size n = 10 by 
LL2-moments, but the bias decreases with 1/n for larger samples (Fig. 1). The use of LL-moments leads to an increase in the bias by 1.5–2.3 times for k.


For the power distribution, c has the largest bias. For n = 10, its relative bias is 0.091 when it is estimated by L-moments, and 0.123 and 0.178 when it is estimated by LL-moments with m = 1 and m = 2, respectively (Fig. 1). The bias of c decreases proportionally to 1/n when the sample size increases. The parameter x0 also has a rather large bias: 0.062 for n = 10 when it is estimated by LL2-moments. 


The bias of the quantile x0.10 is smaller than 0.01 in absolute value for all the distributions, except in the case of power distribution where it has a bias equal to 0.019 for n = 10 when estimated by L-moments. For the Weibull and power distributions, biases are smaller when x0.10 is computed using parameters that are estimated by 
LL1-moments than in the case where they are estimated by L-moments, and are smallest when the parameters are estimated by LL2-moments.

Sampling MSE of statistics

Relative mean square error (MSE) is computed as the sum of the squares of the relative bias and the relative variance. Because relative bias is generally very small, relative MSE is practically equivalent to relative variance except in a few cases (parameter k of the Weibull distribution and c of the power distribution for n = 10). 


Figure 2 shows the relative MSE of the first- and second-order L- and LL-moments (m = 1 and 2) as functions of the sample size n for the normal distribution. Correspond​ing figures for the Weibull and power distributions are not given because they are very similar to Fig. 2. The relationships for the parameters of the distributions and the quan​
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Fig. 2 Relative variances of the first- and second-order L- and LL-moments of the normal distribution as functions of the sample size n for m = 0, 1 and 2. 
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Fig. 3 Relative variances of the parameters ( and ( and quantile x0.10 of the normal distribution as functions of the sample size n for m = 0 and 2.

tile x0.10 are given in Figs 3, 4 and 5, where the curves for m = 1 are not plotted for the sake of clarity (these curves are between those for m = 0 and m = 2). 


The MSEs of all statistics are in general roughly proportional to 1/n. The MSEs of 
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 and c of the power distribution increase more rapidly as n decreases for n ( 25. Hosking (1986) gave a formula by Nair for the 

[image: image57.emf]Weibull

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10 20 30 40 50 60 70 80 90 100

n

Rel. MSE

k        m=0

a        m=0

x10     m=0

k         m=2

a         m=2

x10     m=2


Fig. 4 Relative variances of the parameters k and a and quantile x0.10 of the Weibull distribution as functions of the sample size n for m = 0 and 2.
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Fig. 5 Relative variances of the parameters c and x0 and quantile x0.10 of the power distribution as functions of the sample size n for m = 0 and 2.

exact variance of (2 of the normal distribution. Simulation results of the present study differ from the exact results by less than 10-5.


The MSEs of (1, (2 and (1L1 are about the same for all three distributions. Those of (1L2 and (2L1 vary slightly among the distributions. The MSE of (2L2 is lower for the power distribution. The MSEs of (1L1 and (2L1 are about 2–4 times higher than that of (1, and the MSEs of (1L2 and (2L2 are 1.5–2 times higher than that of (2 (Fig. 2).


Most of the relative sampling MSEs are less than 0.10, even for n = 10. The parameter c of the power distribution has the largest MSE, which varies from 0.233 to 0.668 for n = 10 when it is estimated by L-moments and LL2-moments, respectively (Fig. 5). For the Weibull distribution, the parameter k has the largest MSE, 0.230 for n = 10 when estimated by LL1-moments, and 0.446 when estimated by LL2-moments (Fig. 4). The MSEs of (2L2 of the normal and Weibull distributions and ( of the normal distribution estimated by LL2-moments are slightly above 0.10 for n = 10 (Figs 3 and 4). The use of LL-moments in the estimation of the parameters is seen to have a significant effect on the MSE of the parameter ( of the normal distribution, k of the Weibull distribution, and c and x0 of the power distribution. In general this effect is higher for m = 2 than for m = 1.


The most significant statistic is the quantile x0.10, which is commonly used in low flow studies. In all cases, the MSEs of the quantile x0.10 of the power distribution are about two times higher than those of the normal and Weibull distributions. The relative MSE of x0.10 increases only slightly when the quantile is computed using the distribu​tional parameters estimated by LL-moments with respect to the MSE of the quantile computed using the parameters estimated by L-moments. This increase is about 10% and 15% for the normal distribution, 18% and 31% for the Weibull distribution (Fig. 4), and 10% and 20% for the power distribution (Fig. 5) when the quantile is computed using the parameters estimated by LL1- and LL2-moments, respectively. The reason why the increase is not as large as those of the MSEs of the distributional parameters themselves (50–100% for the normal distribution, 100–250% for the Weibull distribu​tion, and 
50–200% for the power distribution) is that the sampling covariances of the parameters have larger positive values when they are estimated by LL-moments, whereas the covariance is close to zero when the parameters are estimated by L-moments.


Monte Carlo simulation study has shown that the bias and variance of the parameters of the distributions studied increased only slightly when the parameters are estimated by LL-moments compared to those estimated by L-moments. The bias of the quantile x0.10 representing the lower tail is generally smaller and its variance is slightly larger, when estimated by LL-moments. Therefore, the method of LL-moments comes out as a reasonable alternative, as is demonstrated below.

EXAMPLE

The use of LL-moments is illustrated on a time series of 36 years of observations of 
7-day annual minimum flows of station no. 28009 in the Trent River basin, UK. The catchment area is 7485 km2, average annual rainfall is 760 mm, the baseflow index is 0.50, and the mean altitude is 142 m (Bayliss, 1999). Lognormal, Weibull and power distributions are fitted to the data by estimating the parameters using L-moments (m = 0) or LL-moments (m = 1, 2, 3 and 4). In the case of the lognormal distribution, L- or LL-moments of the logarithms of the data are used (m = 0, 1 and 2) to estimate the parameters.

Table 1 Parameters of the distributions fitted to the data.


Weibull distribution:
Power distribution: 
Lognormal distribution:

m
k
a
C
x0
(
(

0
5.68
32.0
3.86
37.3
3.37
0.204

1
6.64
31.2
5.33
34.1
3.37
0.213

2
6.86
30.9
5.89
33.1
3.38
0.228

3
6.86
30.9
6.03
32.8



4
6.64
31.4
6.00
32.9




The values of the estimated parameters are given in Table 1. It may be seen that the values vary depending on whether they are estimated by L-moments or LL-moments, except for the lognormal distribution. The value of m has much smaller influence on the parameters estimated using the LL-moments. For m ( 2 the variation is negligible for the Weibull and power distributions (parameters of the lognormal distribution are estimated for m ( 2 as the expressions for m ( 2 are awkward to obtain). For the Weibull distribu​tion, parameter values are the same for m = 2 and m = 3, and they go back to those for m = 1 when m is increased to 4. For the power distribution, parameter values vary gradually when m is increased above 1. 


Figure 6 shows the data and the fitted lognormal, Weibull and power distributions with parameters estimated by L-moments (m = 0) or LL-moments (m = 2). It may be seen that the curve obtained with L-moments is quite different from the curve obtained with LL-moments for each distribution. The power distribution with m = 0 deviates 
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Fig. 6 Lognormal, Weibull and power distributions fitted to the observations of the example by LL-moments for m = 0 and m = 2.

Table 2 Low flow quantiles estimated by various distributions using LL-moments.


T
Weibull distribution:
Power distribution:. 
Lognormal distribution:. 

q
(year)
m = 0
1
2
3
4
0
1
2
3
4
0 
1
2

0.20
5
24.5
24.8
24.8
24.8
25.0
24.6
25.2
25.2
25.1
25.1
24.4
24.3
24.3

0.10
10
21.5
22.2
22.2
22.2
22.4
20.6
22.1
22.4
22.4
22.4
22.3
22.1
22.0

0.04
25
18.2
19.2
19.3
19.3
19.4
16.2
18.6
19.2
19.2
19.2
20.3
20.0
19.7

0.02
50
16.1
17.2
17.5
17.5
17.5
13.5
16.3
17.0
17.1
17.1
19.1
18.8
18.4

0.01
100
14.3
15.5
15.6
15.6
15.7
11.3
14.3
15.1
15.3
15.2
18.1
17.7
17.3

most from the others. Although it gives higher F(x) probabilities than those observed for low flows, the lowest value is best predicted by this distribution. 


Quantiles xq (q = 1/T), i.e. T-year minimum flows, are estimated for T = 5, 10, 25, 50 and 100 on the basis of the lognormal, Weibull and power distributions using the parameters corresponding to various values of m (Table 2). The power distribution has the upper bound xo, and therefore is fitted to the lower part of the data, x ( x0. 

The xq values vary with the distribution and with the value of m used in estimating the LL-moments. The largest differences occur for q = 0.01, and the differences reduce as q increases (T decreases). The difference between the distributions for m = 0 also increases with increasing T, and the smallest difference is found between the distri​butions for m = 1. For a given distribution, the difference between m = 0 and m = 1 increases with higher T. For the Weibull and power distributions, for which m takes on values up to 4, there are no significant differences within one distribution for quantile estimates when m ( 2. Figure 6 shows that the Weibull and power distribu​tions with parameters estimated by LL-moments (m = 2) fit very well to the low observations. The lognormal distribution gives quantile estimates that are highest for q ( 0.02 and lowest for q ( 0.10 when compared to the other two distributions. Table 3 shows the relative MSEs of the quantile x0.10 for each distribution and m = 0, 1 and 2, estimated using the results in Figs 4–6. It may be seen that the estimates of the Weibull distribution have the smallest MSE, and those of the power distribution have the largest MSE. The effect of the value of m on MSE is relatively small.


In this example, the choice of the distribution to be used for quantile estimation depends on a number of factors. The lognormal distribution gives the highest estimates for low flows (T > 10). The power distribution with m = 0 gives the smallest estimates for T ( 10, but its sampling MSE is higher than for the other distributions. The Weibull distribution with m = 2 fits well to the low observations except the lowest one, which looks like an outlier. As its MSE is smaller than those of the other two distributions, this distribution seems to be a good choice in this example.


In order to compare the above results with those of another evaluation method, conditional distributions are fitted to the lower 80% of the data using L-moments (Nathan & McMahon, 1990). Estimated quantiles are given in Table 4. Estimates of the Weibull distribution are higher than those obtained by LL-moments for T ( 25. The

Table 3 Relative MSE of the quantile x0.10. 

Weibull distribution:
Power distribution:
Lognormal distribution:

m = 0
1
2
0
1
2
0
1
2

0.016
0.019
0.020
0.040
0.042
0.044
0.023
0.022
0.023

Table 4 Low flow quantiles estimated by various distributions using L-moments of the lower 80% of the data. 

q
T (year)
Weibull distribution
Power distribution
Lognormal distribution

0.20
5
24.6
24.1
24.1

0.10
10
22.2
21.1
22.2

0.04
25
19.6
17.8
20.5

0.02
50
17.9
15.6
19.5

0.01
100
16.4
13.7
18.5

power distribution gives estimates that are between the LL-moments estimates with m = 0 and m = 1. The lognormal distribution estimates are generally higher than those obtained using LL-moments. It may be seen that for the lowest quantiles the power distribution gives the smallest estimates, and the lognormal distribution gives the largest estimates, no matter which method is used. Estimates of x0.10 are not sensitive to the distribution and to the method of parameter estimation. 

CONCLUSIONS

LL-moments are modified versions of the L-moments based on the lower elements of the samples. Their use in parameter estimation gives more weight to the smaller observations in the sample. Therefore the fitted probability distribution has a better agreement with the lower part of the data. It is meaningful to use LL-moment estimated parameters when  calculating the low flow quantiles. Equations are derived that relate the first- and second-order LL moments of the normal, Weibull and power distributions to their parameters. 


Monte Carlo simulation studies are performed to evaluate the sampling properties of LL-moments and to compare them with those of L-moments. Simulations with samples derived from the normal, Weibull and power distributions have shown that the relative biases of LL-moments of the distributional parameters and x0.10 quantiles estimated using them are very small. Quantiles have lower biases when estimated by LL-moments. Relative variances of the above statistics are somewhat higher than those estimated using L-moments. However, the relative variance and MSE of the x0.10 quantile estimated using LL-moments are almost the same as that estimated using 
L-moments. This is a significant result because this quantile is commonly used in low flow studies. 


Parameter estimation by LL-moments is applied to the low flow record of a station. The estimates of the fitted lognormal, Weibull and power distributions differ when L-moments or LL-moments of various m values are used. Differences are larger when T increases. The Weibull and power distributions with parameters estimated by LL-moments (m = 2) are found to have a very good fit to the lower tail of the observations. In this example, the Weibull distribution can be preferred because the mean square error of its quantile estimate is the lowest. 
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