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ABSTRACT

The purpose of this study is to apply the software tool UNICORN to a problem, which has been proposed by Hanneke van der Klis from Delft University of Technology. She carried out preliminary analysis in the publication Stochastic modelling of river morphology:  A case study ([van der Klis, 2000]), where she develops a model which simulates changes in a channel bed level caused by a constriction. It contains extensive analysis of the Monte Carlo simulation without correlations introduced between the input parameters of the model.

On the other hand, UNICORN software allows us to perform Monte Carlo simulations on static models (as opposed to dynamic models e.g. differential equations) with a given dependence structure. The result of these simulations can then be represented by so called cobwebs. Cobweb is a graphical representation of the joint distribution of the percentiles. It is a practical tool that can be used to visually look for interesting interactions (i.e. correlations) between input and output variables.

1. INTRODUCTION

In this case study we model the effect of a constriction on the bed level of a channel. We consider a hypothetical 90km long channel with the constriction between the 20th and 30th kilometre of the canal. The width of the channel is 200m outside and 160m inside the constriction. See Figure 1 for an overview. The constriction causes the bed level in the channel to change since the flow inside the constriction is much higher than outside. However the sediment transport converges to a state in which it is constant along the channel length in time, because the whole system converges to an equilibrium state. At that moment the flow of the water is constant along the channel. This state can only be achieved if we assume constant discharge. The first part of our analysis is based on this assumption. We will determine the variables with the most influence on the bed level change.  
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Figure 1:  Overview of the channel with constriction

2. CONSTANT RIVER DISCHARGE

2.1 UNCERTAINTY ANALYSIS

The UNICORN model is rather simple and consists of the following input random variables and formulas:  

•
Input variables with distributions: 

C – roughness 
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 – N(45, 52)

BC – channel width inside the constriction [m]

BO  – channel width outside the constriction [m]  

Q – discharge [m3/s] – N(1450, 1502)

S – sediment transport [m3/s]  - U(0.025, 0.072)

b – parameter – U(4, 6)

– parameter – U(0.0078, 0.0118)

D – grain size [m] – G(2.4, 2500)

•
Formulae
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where h is depth, u is velocity and i is slope. Symbols h20 and h30 denote the bed level change at 20th and 30th kilometre along the channel and i is the bed slope. The slope drops only 1m over 90km. For the grain size distribution we chose the Gamma distribution, which puts 98% of the mass between the proposed 0.0001 and 0.003.

We also introduced some dependencies between input variables. Unfortunately, at this stage there is no possibility to fully incorporate the correlation matrix into a UNICORN model. We can now do it only for one row or column of the matrix. We decided to take Q as a root of the dependence tree. Hence we assume that, for example, C and S or C and D are not correlated.
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Figure 2:  Correlation trees used to introduce dependencies between input variables.

UNICORN performed a Monte-Carlo simulation based on 20000 samples. In Table 1 you can find the statistics of the change of the depth h20 and h30. Our results confirm results obtained by simulations in SOBEK (see [van der Klis, 2000]). The mean values are about 1.3m, and this is similar to what the SOBEK model returns.

	
	
	Mean
	variance
	5th perc
	median
	95th perc

	
	uncorr.
	1.38E+0
	5.77E-2
	1.04E+0
	1.35E+0
	1.84E+0

	h20
	corr.  1
	1.40E+0
	7.65E-2
	1.01E+0
	1.36E+0
	1.90E+0

	
	corr.  2
	1.39E+0
	6.62E-2
	1.03E+0
	1.35E+0
	1.85E+0

	
	uncorr.
	1.30E+0
	7.08E-2
	9.17E-1
	1.27E+0
	1.79E+0

	h30
	corr.  1
	1.31E+0
	8.83E-2
	8.90E-1
	1.27E+0
	1.84E+0

	
	corr.  2
	1.30E+0
	7.86E-2
	9.11E-1
	1.27E+0
	1.81E+0


Table 1: Statistics of the change of the depth h20 and h30 for different dependence structures.

We can also look how strong h30 is correlated to the other variables. Look in Table 2. D, Q and C are strongly correlated with h30. The parameter a is an inverse function of C and D and we could expect this strong positive correlation that we see in the table (since both C and D are strongly negatively correlated to h30). The variable S, representing the sediment transport, shows an interesting behaviour. For the correlation tree 1 we find strong positive correlation between S and h30, whereas for the correlation tree 2, S seems to be uncorrelated.

	
	C
	Q
	S
	b
	
	D
	a

	uncorr.
	-0.32
	0.45
	-0.26
	0.18
	0.11
	-0.63
	0.69

	corr. 1
	-0.58
	0.63
	0.57
	0.17
	0.11
	-0.74
	0.83

	corr. 2
	-0.47
	0.52
	0.04
	0.18
	0.13
	-0.65
	0.72


Table 2: Correlations between h30 and other variables.

2.2 MONTE CARLO SIMULATION

In Figure 3 are the results of the Monte Carlo simulations in UNICORN. They represent the mean change in bed level for each set with the 90% confidence bounds.
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Figure 3:  Mean, 5th and 95th quantiles of change of the bed level.

Another interesting graphical representation of the results is a cobweb plot.  

a) Conditional on top 10 percentiles
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b) Conditional on lower 10 percentiles
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Figure 4:  Cobweb conditional on percentiles of h30 for the model using correlation tree 2.

In Figure 4 are two cobweb plots with the output h30 on the left and all input variables to its right. Each vertical line represents the quantiles or percentiles of the selected variable. The plot in Figure 4a is conditioned on the top 10 percentiles of h30. Each individual sample realizes one percentile of each variable. Connecting these lines from left to right, we represent the sample path. An overview of graphical representations for uncertainty and sensitivity analysis including the discussion of cobwebs is given in [Kurowicka & Cooke, 2001]. The plot clearly shows the correlations as given in Table 2. For example:  

•
h30 and C are negatively correlated (=-0.47). In the plot this correlation can be seen because the lines connect the upper percentiles of h30 with mostly lower percentiles of C. 

•
h30 is even stronger negatively correlated with D, because the mass of the lines is more concentrated on the lower percentiles of D, compared to those of C. 

•
The upper percentiles of h30 end up uniformly (more spread out) on S, confirming the low correlation of 0.04. 

•
h30 is mostly correlated with the parameter a. All lines from the upper 10 percentiles of h30 end up at the upper 20 percentiles of a. 

Figure 4b shows the same cobweb, but this time conditional on the lower 10 percentiles of the model. We can see that a is less correlated to the lower values of h30 than to the higher values. 

3.  VARIABLE RIVER DISCHARGE
In the case where we have a variable discharge in time the equilibrium state in the previous section will never be reached. The variability will always induce changes in the bed level.  We now have a dynamic time dependent process, which can be described by the following four equations:  

1.
the continuity equation:  


[image: image16.wmf]0

=

¶

¶

x

Buh


2.
the momentum equation:
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3.
an equation describing the changes in the bottom level: 
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4.
and a sediment transport equation: 
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 and b=5. Symbol zb denotes the bottom level.

3.1  SOBEK AND MONTE CARLO SIMULATION
The idea of this section is to sample the input variables and subsequently run them through the SOBEK model in order to obtain the results of the river morphology problem. First we need to sample random discharge heights, which occur during random lengths of time.
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Figure 5:  Representation of the variable and random discharge over a period of 5 years.

A graphical representation of our samples is given in Figure 5. We start by sampling a low value L and a time until occurrence T. At time T we sample a high value H (which is shifted to 2000m3/s) and a duration Dh. At time T+Dh we then sample a new low value L. We keep this low value until we reach a new year and then we start the same procedure with sampling a new T. The distributions and the parameters that we used are given by:  

a)
Time until occurrence T [10 days] - Exponential distribution with =11.5 and min(T)=3 (= 30 days):  T=round(exp(=11.5)+3).

b)
Height of low discharges L [m3/s] - Normal distribution with =1215 and =217.

c)
Height of high discharges H [m3/s] - Exponential distribution with =544 and min(H)=2000:  H=exp(=544)+2000.

b) Duration of high discharge peaks Dh [10 days] - Exponential distribution with =2.2 and min(Dh)=1

We use the values from the first section as our random inputs for the grain size D and roughness C and the other parameters in the model.

As in the previous section we will consider a case where the input variables are uncorrelated and one where we define a correlation structure between the variables. For the latter case we use (H,Dh)=0.4 and (H,C)=-0.5. This means that the height of the high discharge peaks are positively correlated with the duration of these peaks and negatively correlated with the roughness.

The total length of the simulation represents 5 years. We consider 300 scenarios and this number seems to be not sufficient for more complex analysis, since in this case the sampling fluctuation effect cannot be neglected. The result of the simulation in SOBEK is shown in Figures 6 and 7, where we distinguish the bed level height after 4 years and after 4 years and 3 months. This is to isolate the effect of one high discharge peak in between these two moments in time. These figures are very comparable to those in [van der Klis, 2000]. We notice two things:  

•
It seems to make no great difference if we induce a certain correlation structure or not.

•
The last high peak does not affect the mean bed level change, but does enlarge the uncertainty bounds considerably at the beginning and right after the end of the constriction.  The flow velocity speeds up at the beginning of the constriction and slows down again right after.  This explains why the uncertainty increases only in one direction at these locations. 

a) Uncorrelated input variables
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b) Correlated input variables
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Figure 6:  Bed level changes after 4 years.

a) Uncorrelated input variables
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b) Correlated input variables
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Figure 7:  Bed level changes after 4 years and 3 months.

3.2 ANALYSIS OF THE RESULTS

We have also looked at cobwebs to get an insight into the dependencies between input and output variables. This task is rather complicated, though. First of all, the numbers of samples we’ve produced differ for all variables. For example there are 1500 samples of T, Dh and H, whereas C and D have only 300 samples. Moreover, for each run of the SOBEK simulation we get data consisting of 181 grid points along the channel (x=0.5km). It is not clear which point is the most appropriate to be chosen for comparison to the input variables. To generate the cobwebs, we first converted the data such that for each variable we had 300 representative samples (average of samples of input variables per run). Hence there was the same amount of samples for each variable. 
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Figure 8:  Cobweb for the uncorrelated variable discharge case (conditioned on top 20% of the average duration of high discharge peaks).

Looking at the general cobweb, there is no strong evidence of correlation between the bed level change and the input variables. Certainly it is much smaller than in the case of the constant river discharge. This can be due to the fact that we took averages of samples instead of taking the samples directly, loosing some correlations between the original variables. The only significant dependence seems to be the dependence between the bed level change and the duration of the high discharge peaks. Longer periods of high discharges tend to result in a lower bed level as can be seen in Figure 8. The same conclusion holds for the correlated case.

If we would look at the effect of the low discharges L separately for each year of the simulation, then we find some interesting dependencies. Look in Figure 9a. Conditioning on high values of low discharge in the fourth year (l4) results in low values of the bed level change (they are negative numbers, thus low percentiles represent big difference of this level) at the 21st kilometre of the channel (after 4 years dh21b and after 4 years and 3 months dh21a). Conditioning on low values of l4 does not result in high percentiles of the bed level change. Secondly, if there was high value of low discharge in third year (l3), then the effect of this event is visible at the 26th kilometre of the channel (Figure 9b). Clearly, more time has gone by since l3 and this caused its result to be moved by the river flow.

a) Conditioned on low discharge in 3rd year
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b) Conditioned on low discharge in 4th year
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Figure 9:  Cobweb for the uncorrelated variable discharge case (conditioned on top 10% of the low discharge in 4th year).

We didn’t notice any correlations between the remaining variables (H, D, T) and the bed level change.

4. CONCLUSIONS

In this report we have looked at a simple one dimensional river morphology model.  First we have considered a case in which the discharge is constant over time. The bed level in this case converges to an equilibrium state. Second we looked at the (more realistic) case in which the discharge is random and varies over time. In our situation we looked at a period of 5 years in which there was one high discharge peak per year.

In the first case we have performed an uncertainty analysis after which we concluded that the discharge, grain size and the roughness of the grain are the most important variables, which influence the result of the model. Parallel to this analysis we have also generated some cobweb plots which confirm the results of the uncertainty analysis.

In the second case we proceeded with the SOBEK simulations. Based on the results of the first case we chose the grain size and roughness as random input variables and sampled the random discharge peaks over a period of 5 years. Now we find that the grain size and the roughness do not influence the results as in the first case, but we see that the duration of the peaks have a slight influence on the bed level change. By taking averages we have made the dependencies smaller, therefore when we looked at individual events we noticed stronger correlations between the variables.
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