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ARSTRACT: When studying the probanilistic design of Nood defences, it is imponant o develop a philosephy w
discern between inherent uncertainty in time and in space. In the paper this philosophy will be described and apphed

on a fictitious example.

1 INTRODUCTION

When studying the probabilistic design of structures,
such as flood defences like dikes or breakwaters, it is
important to develop a philosophy to discern between
inherent uncertainty in time and in space. Inherent
uncertainty in time means that the realisations of the
process in the future remain uncertain, For a dike
desipn we have inherent uncertainty in time from the
individual wave heights and water levels for instance.
Unlimited data will not reduce thiz inherent
uncertainty. Inherent uncertainty in space is from a
different kind. The properties of the foundation and the
strength of the dike have only one realisation per
lifetime. An important aspect of this wpe of
uncertainty 15 that without further investigations the
knowledge of the foundation increases with time.
During the life of the structure information will be
gained as each storm exceeding the previous that is
survived by the structure, pushes the lower limit of the
strength upward (Bayesian updating of the strength).
The above principles will be illustrated in this paper
by caleulating the probability distnibution of the life
time to failure of a structure with a resistance with
inherent uncertainty in space subjected (o a vearly
maximal load with inherent uncertainty in time. From
this distribution the conditional failure rae will be
derved. Two examples will be discerned in which the
slandard deviation of the resistance will be varied
against the standard deviation of the vearly maximal
load. The consequences on the conditional failure rate
will be analyzed,

The paper is organized as follows, First the two
different kinds of uncertainties will be described in the
sections on inherent uncertainty in time and inherent
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uncerainty in space. The effect of both uncenainties
on the lifetime reliability of flood protection will be
deseribed in the main part of the paper. Finally
conclusions will be drawn.,

2 INHERENT UNCERTAINTY IN TIME

Stochastic processes Tunning in time (individual wave
heights, significant wave heights, water |evels,
discharges, ete.) are examples of the class of inherent
uncertaimty. Unlimited data will not reduce this
uncertainty. The realisations of the process in the
future stay uncertain. The probability density function
(p.d.f) or the cumulative probability distribution
function (c.d.f) and the auto-correlation function
describe the process,

In case of a periodic stationary process like a
wave field the awtocorrelation function will have a
sinusoidal form and the spectrum as the Fourier-
transform of the autocomelation function gives an
adequate description of the process. Anention should
be paid to the fact that the well known wave energy
spectra as  Pierson-Moskowitz amd Jonswap are not
always able to represent the wave field at a site. In
quite some practical cases swell and wind wave form
a wave field together. The presence of two energy
sources may be clearly reflected in the double peaked
form of the wave energy spectrum.

An antractive aspect of the spectral approach is
that the inherent uncertainty can be easily transferred
through linear systems by means of transfer functions,
By means of the linear wave theory the incoming wave
spectrum can be transformed into the spectrum of
wave loads on a flood defence structure. The p.d.f. of



wave loads can be derived from this wave load
spectrum. Of course it is assumed here that no wave
breaking takes place in the vicinity of the structure, In
case of non-stationary processes, thal are gouverned by
meteoralogical and atmospheric cyeles (sign. wave
height, discharges) the p.d.f. and the autocomelation
function are needed. Here the autecorrelation lunction
gives an impression of the persistence of the
phenomenonThe persisience of rough and calm
conditions is of utmost importance in workability and
serviceability analyses.

If the interest is directed to the analysis of
nltimate limit states e.g. sliding of the structure, the
autocorrelation s eliminated by selecting only
independent maxima for the statistical analvsis. If this
selection method does not guarantes a set of
homogeneous and independent observations, physical
or meteorological insights may be used to homogenise
the dataser. For insiance if the fewch in N'W-direction
is clearly maximal, the dataset of maximum significant
wave height could be limited to NW-storms. If such
insight fails, one could take only the observations
exceeding a certain threshold (P.O.T.) into account
hoping that this will lead 1o the desired result. In case
of a clear yearly seasonal cycle the statistical analysis
can be limited to the yearly maxima,

Special attention should be given to the joint
oceurrence of sighificant wave height H, and spectral
peak period T_. A general description of the joint p.d.f,
of H, and T, is not known. A practical solution for
extreme conditions considers the significant wave
height and the wave steepness as independent
stochastic varables to describe the dependance. This is
a conservative approach as extreme wave heights are
more easily realised than extreme peak periods. For the
practical description of daily conditions (SLS) the
independence of 5, and T, seems sometimes a better
approximation. Also the dependance of water levels
and significant wave height should be explored
because the depth limitation to waves can be reduced
by wind setup. Here the statistical analysis should be
clearly supported by physical insight. Moreover it
should not be forgotien that shoals could be eroded or
accreled due to changes in current or wave regime
induced by the construction of the flood defence
structure,

JINHERENT UNCERTAINTY IN SPACE

Soil properties can be described as stochastic processes
in space. From a number of field tests the p.d.f. of the
soil  property and  the  (three-dimensional)
autocorrelation  function can he fixed for each
homogeneous soil layer. Here the theory is further
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developed than the practical knowledge. Numerous
mathematical expressions are proposed in the literature
to describe the autocorrelation. No clear preference has
however emerged yet as to which functions describe
the fluctuation pattern of the soil properties best
Moreover the correlation length (distance where
correlation becomes zero) seems to be of the order of
J0 w 100m while the spacing of traditional saoil
mechanical investigations for flood defence struetures
is of the order of 500m. So it seems that the intensity
of the scil mechanical investigations has to be
increased considerably if reliable estimates have 1o be
made of the autocorrelation function.

The acquisition of more data has a different
effect in case of stochastic processes in space than in
time. As breakwater structures are immobile, there s
only one single realisation of the field of soil
properties. Therefore the soil propenties an the location
could be exactly known if sufficient soil investigations
were done. Consequently the aciual soil properties are
fixed after construection, although not completely
known 1o man. The uncertainty can be described by
the distribution and the autocorrelation function, but it
i5 in fac! a case of lack of info.

An important aspect of this type of uncertainty
is that without further investigations the knowledge of
the foundation increases with time, During the life of
the structure information will be gained as each storm
exceeding the previous that is survived by the
structure, pushes the lower limit of the strength upward
{Bayesian updating of the strength).

4 EFFECT OF UNCERTAINTY ON LIFETIME
RELIABILITY

From an engineering point of view the Bayvesian
approach that takes all uncertainties into account as
p.d.f's reflects the designer's intuition very well,
Keeping the physical structure equal an increase in
unceriainty of any wvariable increases the formal
probability of failure too,

From this point of view there is no difference
between inherent, statistical and model uncertainty; all
have to be incorporated in  the probabilistic
calculations. In the probabilistic calculations however
a difference occcurs between uncenainties that have
many (e.g. vearly) realisations during the lifetime of

thee structure and thoss that have only one connected to |

the specific structure and the site. Every storm season
shows an independent maximum H, every year, The
properties of the foundation and the strength of the
flood defence structure have only one realisation per

structure, Conseguently the probability of failure is not |
solely a property of the structure but also a result of our |
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Figure 1. One type of load and three wypes of
resistances.

lack of knowledge.

The effect of uncertainty on the lifetime

reliability will be illustreated hy the following
hypothetical example of the probability of failure ofa
flood defence structure, In the example, one type of
load function and three types of resistance functions
are considered (see figure 1.
For the load function one can think of the exponential
pod.f of the wave heights in front of the structure. For
the three types of resistance functions one can think of
the normal p.d.f."s of the {quite certain; uncertain; very
unceriain, resp.), crest height of the structure.

Failure is defined by Z<0, in which Z=R-5
with R the resistance function and S the load function.
A series of observations can be made.

4.1 First Chservation

Let the failure at time i be defined az {Z=0}. Consider
the correlation in the reliability in two subsequent
years i and i+1.

DL = 0y N0 ") (1}

This result can be derived from the caleulation of

eoviZ L FE(R-8 - e DOCR=5, (g=pia ).

It can be noted from (1) that if o increases, then p
eonverges to one. In words: if the standard deviation of
the yearly maximal wave load is large in relation 1o the
standard deviation of the resistance, the dependence
between failure in two subsequent years is low. [T
however, keeping the standard deviation of the
reliability function equal. the opposite is true, the
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Figure 2. Monte Carlo simulation of the reliability in
two subsequent years,

failure in subsequent years are dependent. 'With the
load and resistance functions of figure 1 the following
correlation coefficients are obtained: p=00231,
=0, 747, and p,=0.904 (see lgure 2).

4.2 Second Observation

Consider the probability of failure at a certain moment
{year number N), assuming that no failure oecured
before that time. This probabality 12 given by:

b = fIN(L-F D) (2)

h{M} is called the conditional failure rate (or hazard
function), FL(N) the cdf of N (subseript L for lifetime),

It can be noted that if o, = 0, then WMN) remains
constant. [If oy increases, then hiN} converges to O,
This is illustrated in figure 3, where the probabilities of
failure F (M) for the three types of resistances are
depicted (upper figure), wgether with the conditional
{ailure rates hiN) (lower figure). Conditional failure
rates are usually decreasing functions in the beginning
af the lifetime of the structure. This phenomenan is
alsn known as “infant mortality”; i.e. early failure of
the structure that is atributable w construction defects
{see Hoeg, 1996 for some very inleresting statistics of
dam failures, ccouring almost all in the beginning of
their lifetimes {figure 3)). Conditional failure rates are
increasing functions at the end of the lifetime of the
structure, because of deterioration of the structure.
Conditional failure rates therefore have a U-shaped (or
bath tub curved) form (see also Langley, 1987).

4.3 Third Observation

It was already noted that if the standard deviation of
the vearly maximal wave load is large in relation 1o the
standard deviation of the resistance the dependence
between failure in iwo subsequent wvears is low.
Therefore, if the probability of failure is say p per year
then the failure probability is approximately M.p during
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Figure 5. Example
(after Hocg, 1994).

the lifetime of N vears. If however, keeping the
standard deviation of the reliability function equal, the
opposite is true, the failure in subsequent years are
dzpendent and in that case the prabability of failure in
the first vear is p and the probahility of failure in the
life time too. In the first case the conditional failure
rate is constant over time and equal to p, In the second
case however the conditional failure rate equals p in
the first year and falls to zero afterwards.,

In terms of formulag; for small oy , the expression

FuN) = [ Fy()™ () dx (3
can be approximated by the simple form:

- 6
o

141-p)" (5)

in which p is the probability of failure in the first year.

In case of larger 0g this approximation is not allowed
and only use of the integral expression of F (N} can be
made (eqgn. (3)). In figure 4, the integral exprassion
and the 2 approximation formalae {egn, (4) and (3))
are compared with eachother,

S CONCLUSIONS

In probabilistic caleulations of structures a difference
pccurcs  between  uncerlaintics that have  many
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realisations during the structure's lifetime (e.g. wave
heights) and uncertainties that have only one realisation
(e.g. soil parameters). This difTerence leads for
gxample to the observation that every storm that was
survived by the structure improves the knowledge of
the palf. of the resistance (pushing the lower tail to
the right), Every year the knowledge of the owner of
the structure grows and the probability of failure of the
structure falls. In exactly the same way the failure
prebability of the structure can be improved by
investigating e.g. the quality of the foundation
assuming that this leaves the average unchanged and
reduces the uncertainty. These ideas have been
illustrated in this paper by a simple hypothetical
example of a flood defence structure. An analysis of
the effect of inherent uncertainty in time and space on
the model has been given.
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