As medical science advances, physicians and patients increasingly rely on sophisticated medical devices for diagnosis, treatment, and long term health care. Biomedical engineers are key players in the development, design, and continuing refinement of devices such as joint replacement prostheses, biosensors, imaging and pattern recognition, as well as advanced instruments for use in such domains as minimally invasive surgery and the diagnosis of movement disorders.

Programme
The TU Delft Master’s Programme in Biomedical Engineering is a multidisciplinary programme which aims to provide you with both an understanding of biology and medical theory and with highly specialised technical training in such fields as electrical, physics, material and mechanical engineering.

You will take courses from three TU Delft faculties - Applied Sciences; Electrical Engineering, Mathematics and Computer Sciences; and Mechanical, Maritime and Materials Engineering. The programme also benefits from the clinical input provided by Leiden University Medical Center, and Erasmus Medical Center in Rotterdam.

You will learn how to develop conceptual models from a technical perspective and you will work in close collaboration with physicians, researchers and other healthcare professionals, including on site at the collaborating academic institutions.

The MSc programme in Biomedical Engineering is a two-year programme.

Tracks
The three tracks offered by the Master programme in Biomedical Engineering are: Neuromusculoskeletal Biomechanics, Medical Devices and Medical Physics.
Track I: Neuromusculoskeletal Biomechanics
This track is focused on understanding the biomechanics of the neuromusculoskeletal system with the aim to improve the vitality of healthy people, enhance the performance of sports professionals and to treat patients suffering from neuromusculoskeletal disorders and diseases.

Track II: Medical Devices
This track provides an integrated platform to enable development of advanced medical devices including biomaterials, design models and fabrication processes for implantable devices, biosensors, medical instruments, external prostheses, orthoses, as well as diagnosis and disease monitoring systems.

Track III: Medical Physics
Medical Physics is aimed at the application of physical methods in health care. Medical physicists are responsible for the standardization, calibration, and purchase of medical instruments, in close cooperation with medical and paramedical professionals. Furthermore, they are responsible for the accuracy and safety of physical methods applied in hospitals for diagnosis and therapy.

Examples of graduation projects
- A visual cortical prosthesis for giving back vision to the blind
- Organs-on-chips to test the efficacy of newly developed drugsmicrostructures
- Heartbeat detection using infrared thermometry in the ear
- Smart catheters for intravascular imaging
- Hand prosthesis for low and middle income countries
- Measuring kinematics of violently shaken infants
- Combining ultrasound and EMG to assess electromechanical muscle dynamics
- Neurofeedback to enhance motor rehabilitation
- Osteogenic and antibacterial activity of strontium and silver containing additively manufactured titanium implants
- MRI prostate cancer radiomics: assessment of effectiveness and perspectives
- Automated bone age assessment based on DXA scans using deep transfer learning
- Combining optimized algorithms for predicting progression in Alzheimer’s disease

Career perspective:
- job as PhD: 31%
- permanent job: 54%
- within 6 months: 100%
- international students: 25%
- female students: 50%
- male students: 50%