Co-Simulation as a Technique for Large-Scale and Complex Multi-Energy Modeling

Dr. Trevor Hardy
Power Systems Research Engineer
Pacific Northwest National Laboratory
17 June 2021
United States Department of Energy National Laboratory System
The Need for Co-Simulation – One Simulator is Not Enough

• Analysis requires the dynamic, two-way interaction between two or more simulation tools and their models
 ▪ Recorded datasets as inputs are not good enough and dynamic interaction is required to meet analysis goals

• Analysis requires development of a system model that transcends traditional simulation tool boundaries
 ▪ Buildings + Power Grid
 ▪ Power Grid + Natural Gas

• Analysis requires a large-scale model not practically captured within a single simulation tool instance.
 ▪ Texas power grid during winter cold snap
Co-simulation is a method for unifying multiple models in a coordinated fashion. Models may or may not:

- Cover similar domains
- Have a similar concept of time
- Be written in the same language
- Be run by simulators on the same computer or operating system, or be in the same network

Co-simulation allows models that have interactions with each other to express those interactions and influence each other’s behavior.
Co-Simulation Platform Key Functions

- Simulator Time Synchronization
- Simulator Data Exchange
 - Timely distribution of appropriate data
 - Data type management
 - Structured data support (e.g. JSONs)
 - Data privacy
Co-Simulation Example

Precipitation, ambient temperature

Humidity, sunlight reflectivity
HELICS co-simulation platform is composed of:

- Libraries and language bindings to use for integrating a simulator
 - C
 - C++
 - Python
 - MATLAB
 - Julia
 - ...

- Executables for running co-simulations and assisting in co-simulation development and testing
 - Data exchange and synchronization services
Co-Simulation Interaction Types

• Physics simulation: value exchanges

![Diagram showing interactions between GridLAB-D and EnergyPlus](image-url)
Co-Simulation Interaction Types

- Communication signals: message exchanges
Co-Simulation with Hardware

- Software-only co-simulation

- Hardware-in-the-loop (HIL) co-simulation
Co-Simulation for Multi-Energy Modeling

• Power System and Natural Gas

Power system physics and operations

Natural gas system physics and operations

Power plant gas pressure

Gas plant electrical power

Interstate pipelines

Intrastate pipelines
Large-Scale Power System Example
Large-Scale and Complex Energy System Example
Popular HELICS Alternatives

- **Functional Mock-up Interface (FMI)**
 - Started out as a means of exchanging dynamic models for automotive components while protecting IP
 - Individual models are called “FMUs”
 - Models must be linked by a master algorithm
 - Most popular implementation is in/with Modelica
 - HELICS has an FMI interface and acts as the master algorithm

- **mosaik**
 - Generic co-simulation framework that started out with a power system focus, just like HELICS.
 - Python based
 - HELICS is C++-based with bindings for a variety of languages including Python
 - Communication over network sockets
 - HELICS also uses network sockets but implements a variety of messaging technologies to fit particular computing environments